
Building reproducible
analytical pipelines with R

Bruno Rodrigues

2023-10-03

Table of contents

Welcome! 1
How using a few ideas from software engineering can

help data scientists, analysts and researchers
write reliable code 1

Preface 3

1. Introduction 11
1.1. Who is this book for? 11
1.2. What is the aim of this book? 12
1.3. Prerequisites . 14
1.4. What actually is reproducibility? 15

1.4.1. Using open-source tools to build a RAP
is a hard requirement 16

1.4.2. There are hidden dependencies that can
hinder the reproducibility of a project . . 18

1.4.3. The requirements of a RAP 19
1.5. Are there different types of reproducibility? . . . 20

I. Part 1: Don’t Repeat Yourself 29
Introduction . 31

2. Before we start 33
2.1. Essential knowledge 33

iii

Table of contents

3. Project start 39
3.1. Housing in Luxembourg 39
3.2. Saving trapped data from Excel 44
3.3. Analysing the data 59
3.4. Your project is not done 60

3.4.1. How easy would it be for someone else to
rerun the analysis? 60

3.4.2. How easy would it be to update the project? 61
3.4.3. How easy would it be to reuse this code

for another project? 61
3.4.4. What guarantee do we have that the out-

put is stable through time? 62
3.5. Conclusion . 63

4. Version control with Git 65
4.1. Installing Git and opening a Github account . . . 69
4.2. Git superbasics 72
4.3. Git and Github 85
4.4. Getting to know Github 97
4.5. Conclusion . 104

5. Collaborating using Trunk-based development 105
5.1. Collaborating as a team 105

5.1.1. TBD basics 105
5.1.2. Handling conflicts 121
5.1.3. Make sure you blame the right person . . 133
5.1.4. Simplified trunk-based development 134
5.1.5. Conclusion 134

5.2. Contributing to public repositories 135
5.3. Further reading 141

6. Functional programming 143
6.1. Introduction . 143

6.1.1. The state of your program 145

iv

Table of contents

6.1.2. Predictable functions 146
6.1.3. Referentially transparent and pure func-

tions . 152
6.2. Writing good functions 154

6.2.1. Functions are first-class objects 154
6.2.2. Optional arguments 160
6.2.3. Safe functions 161
6.2.4. Recursive functions 163
6.2.5. Anonymous functions 165
6.2.6. The Unix philosophy applied to R 165

6.3. Lists: a powerful data-structure 167
6.3.1. Lists all the way down 167
6.3.2. Lists can hold many things 168
6.3.3. Lists as the cure to loops 173
6.3.4. Data frames 179

6.4. Functional programming in R 196
6.4.1. Base capabilities 196
6.4.2. purrr . 203
6.4.3. withr . 205

6.5. Conclusion . 208

7. Literate programming 209
7.1. A quick history of literate programming 211
7.2. {knitr} basics 224

7.2.1. Set up . 224
7.2.2. Markdown ultrabasics 227

7.3. Keeping it DRY 233
7.3.1. Generating R Markdown code from code . 234
7.3.2. Tables in R Markdown documents 244
7.3.3. Parametrized reports 247

7.4. Conclusion . 252

8. Conclusion of part 1 253

v

Table of contents

II. Part 2: Write IT down 255
The reproducibility iceberg 257

9. Rewriting our project 263
9.1. An Rmd for cleaning the data 265
9.2. An Rmd for analysing the data 279
9.3. Conclusion . 286

10.Basic reproducibility: freezing packages 289
10.1. Recording packages’ version with {renv} 291

10.1.1. Daily {renv} usage 301
10.1.2. Collaborating with {renv} 304
10.1.3. {renv}’s shortcomings 304

10.2. Becoming an R-cheologist 306
10.3. Conclusion . 310

11.Packaging your code 311
11.1. Benefits of packages 312
11.2. {fusen} quickstart 313
11.3. Turning our Rmds into a package 323
11.4. Including datasets 335
11.5. Installing and sharing the package 337

11.5.1. Code is hosted 338
11.5.2. Code cannot be hosted 339
11.5.3. Marketing your work 341

11.6. Conclusion . 344

12.Testing your code 345
12.1. Unit testing . 346
12.2. Assertive programming 358
12.3. Test-driven development 366
12.4. Code coverage . 367
12.5. Conclusion . 369

vi

Table of contents

13.Build automation with targets 371
13.1. Introduction . 371
13.2. {targets} quick-start 373

13.2.1. _targets.R’s anatomy 374
13.3. A pipeline is a composition of pure functions . . . 376
13.4. Handling files . 383
13.5. The dependency graph 387
13.6. Running the pipeline in parallel 391
13.7. {targets} and RMarkdown (or Quarto) 399
13.8. Rewriting our project as a pipeline and {renv}

redux . 409
13.9. Some little tips before concluding 420

13.9.1. Load every target at once 420
13.9.2. Get metadata information on your pipeline420
13.9.3. Make a target (or the whole pipeline) out-

dated . 422
13.9.4. Customize the network’s visualisation . . 423
13.9.5. Use targets from one pipeline in another

project . 423
13.9.6. Understanding this cryptic error message . 423

13.10.Conclusion . 424

14.Reproducible analytical pipelines with Docker 425
14.1. What is Docker? 429
14.2. A primer on Linux 434
14.3. First steps with Docker 440
14.4. The Rocker project 447
14.5. Dockerizing projects 456
14.6. Dockerizing development environments 463

14.6.1. Creating a base image for development . . 463
14.6.2. Sharing images through Docker Hub . . . 467
14.6.3. Sharing a compressed archive of your image472

14.7. Some issues of relying on Docker 475
14.7.1. The problems of relying so much on Docker475

vii

Table of contents

14.7.2. Is Docker enough? 476
14.8. Conclusion . 477

15.Continuous integration and continuous deployment 479
15.1. CI/CD quickstart for R programmers (and others) 482
15.2. Running a RAP using GitHub Actions 488
15.3. Craft a dockerized dev env with GA 490
15.4. Run a RAP using a dockerized dev env on GA . . 500
15.5. Conclusion . 504

16.Conclusion of part 2 507

17.The end 511

“So what?” 513

References 517

viii

Welcome!

How using a few ideas from software
engineering can help data scientists,
analysts and researchers write reliable
code

Data scientists, statisticians, analysts, researchers, and many
other professionals write a lot of code.

Not only do they write a lot of code, but they must also read
and review a lot of code as well. They either work in teams and
need to review each other’s code, or need to be able to repro-
duce results from past projects, be it for peer review or auditing
purposes. And yet, they never, or very rarely, get taught the
tools and techniques that would make the process of writing,
collaborating, reviewing and reproducing projects possible.

Which is truly unfortunate because software engineers face the
same challenges and solved them decades ago.

The aim of this book is to teach you how to use some of the best
practices from software engineering and DevOps to make your
projects robust, reliable and reproducible. It doesn’t matter if
you work alone, in a small or in a big team. It doesn’t matter
if your work gets (peer-)reviewed or audited: the techniques

1

Welcome!

presented in this book will make your projects more reliable
and save you a lot of frustration!

As someone whose primary job is analysing data, you might
think that you are not a developer. It seems as if developers are
these genius types that write extremely high-quality code and
create these super useful packages. The truth is that you are a
developer as well. It’s just that your focus is on writing code
for your purposes to get your analyses going instead of writing
code for others. Or at least, that’s what you think. Because in
others, your team-mates are included. Reviewers and auditors
are included. Any people that will read your code are included,
and there will be people that will read your code. At the very
least future you will read your code. By learning how to set up
projects and write code in a way that future you will understand
and not want to murder you, you will actually work towards
improving the quality of your work, naturally.

The book can be read for free on https://raps-with-r.dev and
you can buy a DRM-free Epub or PDF on Leanpub1.

You can submit issues, PRs and ask questions on the book’s
Github repository2.

1https://leanpub.com/raps-with-r/
2https://github.com/b-rodrigues/rap4all

2

https://raps-with-r.dev
https://leanpub.com/raps-with-r/
https://github.com/b-rodrigues/rap4all

Preface

In the summer of 2022, a former colleague from my first job
asked me if I wanted to help him teach a class at the University
of Luxembourg. It was a class for the Master’s of Data Science,
and the class was supposed to be taught by non-academics like
us. The idea was to teach the students some “real-world” skills
from the industry. It was a 40 hours class, and naturally we
split them equally between us; my colleague focused on time
series statistics but I really didn’t know what I should do. I
knew I wanted to teach, I always liked teaching, but I am a
public servant in the ministry of higher education and research
in Luxembourg. I still code a lot, but I don’t do exciting machine
learning anymore, or advanced econometrics like my colleague.
Before (re)joining the public service I was a senior data scientist
and then manager in one of the big four accounting firms. Before
that, and this is where my colleague and I met, I was a research
assistant in the research department of the national statistical
institute of statistics in Luxembourg, and my colleague is still
an applied researcher there.

What could I teach these students? What “skills from the indus-
try” could I possibly share with them? I am an expert in nothing
in particular. Actually, I don’t really know anything very deeply,
but know at least a little about many different things. There are
many self-help books out there that state that it’s better to know
a lot about only a few, maybe even only one, topic, than know
a lot about many topics. I tend to disagree with this; at least

3

Preface

in my experience, knowing enough about many different topics
always allowed me to communicate effectively with many differ-
ent people, from researchers focusing on very specific topics that
needed my help to assist them in their research, to clients from
a wide range of industries that were sharing their problems with
me in my consulting years. If I needed to deepen my knowledge
on a particular topic before I could intervene, I had the neces-
sary theoretical background to grab a few books and learn the
material. Also, I was never afraid of asking questions.

This is reflected in my blogging. As I’m writing these lines
(beginning of 2023), I have been blogging for about ten years.
Most of my blog posts are me trying to lay out a problem I
had at work and how I solved it. Sometimes I do some things
for pleasure or curiosity, like the two posts on the video game
nethack, or the ones on 19th century newspapers where I learned
a lot about NLP. Because I was lucky enough to work with
different people from many backgrounds, I always had to solve
a very wide range of problems.

But that still didn’t really help me to find a topic to teach…
but then it dawned on me. Even though in my career I had
to help many different people with many different backgrounds
and needs, there were two things that everyone always required:
traceability and reliability.

Everyone wanted to know how I came to the conclusions that I
came to, and most of them even wanted to be able to reproduce
my steps as a form of double checking what I did (consultants
are expensive, so you better make sure that they’re worth their
hourly rate!). When I was a manager, I applied the same logic
to my teammates. I wanted to be able to understand what they
were doing, or at least know that if I needed to review their work
deeply, the possibility was there.

4

https://www.brodrigues.co/blog/2018-11-03-nethack_analysis/
https://www.brodrigues.co/blog/2018-11-03-nethack_analysis/
https://www.brodrigues.co/blog/2019-01-04-newspapers/

Preface

So what I had to teach these students of data science was some
best practices in software engineering. Most people working
with data don’t get taught software engineering skills. Courses
focus on probability theory, linear algebra, algorithms, and pro-
gramming but not software engineering. That’s because soft-
ware engineering skills get taught to software engineers. But
while statisticians, data scientists, (or whatever we get called
these days), are not software engineers, they do write a lot of
code. And code that is quite important at that. And yet, most
of us do work like pigs (no disrespect to pigs).

For example, how much of the code you write that produces very
sensitive and important results, be it in science or in industry,
is thoroughly tested? How much of the code you use relies on a
single person showing up for work and using some secret knowl-
edge that is undocumented? What if that person ends up under
a bus? How much code do you run that no one dares touch
anymore because that one person from before did end up under
a bus?

How many people do you have to ping when you need to get an
update to a quarterly report? How many people do you have
to ping to know how Table 3 from that report from 2020 that
was quickly put together during the Covid-19 lockdowns was
computed? Are all the people involved even working in your
company still?

When collaborating with teammates to write a report or scien-
tific paper, do you consider potential risks? (If you’re wondering
What risks? then you’re definitely not considering them.)

Are you able to tell anyone, exactly, how that number that gets
used by the CEO in that one report was made? What if there’s
an investigation, or some external audit? Would the auditors
be able to run the code and understand what is going on with

5

Preface

as little intervention as possible (ideally none) from you? But
I don’t work in an industry that gets audited, you may think.
Well, maybe not, or maybe one day your work will get audited
anyways. Maybe it’ll get audited internally for whatever reason.
Maybe there’s a new law that went into force that requires your
work, or parts of your work, to be easily traceable.

And if you’re a scientist, your work does get audited, or at least it
should be in theory. I don’t know any scientist (and I know more
scientists than the average person, thanks to my background and
current job) that is against the idea of open science, open data,
reproducibility, and so on. Not one. But in practice, how many
papers are truly reproducible? How many scientific results are
auditable and traceable?

Lack of traceability and reproducibility can sometimes lead to
serious consequences. If you’re in the social sciences, you likely
know about the Reinhart and Rogoff paper. Reinhard and Ro-
goff are two American economists that published a paper in 2010
that showed that when countries are too much in debt (over
60% of GDP according to the authors) then annual growth de-
creases by two percent. These papers provided an empirical
justification for austerity measures in the aftermath of the 2009
European debt crisis. But there was a serious problem with the
Reinhard and Rogoff paper. It’s not that they somehow didn’t
use the correct theoretical framework or modelling procedure in
their paper. It’s not that their assumptions were disputable or
too unrealistic. It’s that they performed their calculations inside
an Excel spreadsheet and did not, and this is not a joke, they
did not select every country’s real GDP growth to compute the
average real GDP growth for high-debt countries:

6

Preface

Figure 1.: You can see that not all countries are selected…

(source to image, archived link3)

And this is not the only problem with this paper.

The problem is not that this mistake was made. Reinhard and
Rogoff are only human and mistakes can happen. What’s prob-
lematic is that this was picked up and corrected too late. In an
ideal world, Reinhard and Rogoff would not have used tools that
make mistakes like this almost impossible to find once they’re
made. Instead, they would have used tools that would have
made such a thing not happen in the first place, or, as a sec-
ond best, making it easier and faster for someone else to find
this mistake. And this is not something that is only useful in
research, but also in any industry. Being able to trust results,

3https://archive.is/DTGpC

7

https://archive.is/DTGpC

Preface

tracing back calculations and auditing are not only concerns of
researchers.

So this is what I decided to teach the students: how they could
structure their projects in such a way that they could spot prob-
lems like that during development, but also make it easy to re-
produce and retrace who did what and when. I wrote my course
notes into a freely available bookdown that I used for teaching.
When I started compiling my notes, I discovered the concept
Reproducible Analytical Pipelines as developed by the Office for
National Statistics (henceforth ONS). I found the name “Repro-
ducible Analytical Pipeline” (henceforth RAP) really perfect for
what I was aiming at. The ONS team responsible for evangelis-
ing RAPs also published a free ebook in 2019 already. Another
big source of inspiration is Software Carpentry to which I was
exposed during my PhD years, around 2014-ish if memory serves.
While working on a project with some German colleagues from
the University of Bonn, the principal investigator made us work
using these concepts to manage the project. I was really im-
pressed by it, and these ideas and techniques stayed with me
since then.

The bottom line is: the ideas I’m presenting here are nothing
new. It’s just that I took some time to compile them and make
them accessible and interesting (at least I hope so) for users of
the R programming language.

At least my students found the course interesting. But not just
students. I tweeted about this course and shared the notes with
a wider audience, and this is when I got very positive feedback
from people that were not my students. People wanted to buy
this as a book and go deeper into the topics laid out. This is
when I realised that, as far as I know, there is not a practical
book available discussing these topics. So I decided to write one,
but I took my time getting started. What finally, really, got me

8

https://rap4mads.eu/
https://analysisfunction.civilservice.gov.uk/support/reproducible-analytical-pipelines/
https://analysisfunction.civilservice.gov.uk/support/reproducible-analytical-pipelines/
https://ukgovdatascience.github.io/rap_companion/
https://software-carpentry.org/

Preface

working on it was when Dmytro Perepolkin reached out to me
and suggested I contact several persons to get their inputs and
ideas and get started. I followed his advice, and this led to very
fruitful discussions with Sébastien Rochette, Miles McBain and
Dmytro. Their ideas and inputs definitely improved the quality
of this book, so many thanks to them. Also thanks to David
Solito, Matan Hakim, Stas Kolenikov, Sam Parmar, Chuck, Ma-
touš Eibich, Jonathan Moore, Alain Vagner and Matthias Meik-
sner for proofreading the book and providing valuable feedback
and fixes. And thank you, dear reader, for picking this up!

This book is divided into two parts. The first part teaches you
what I believe is essential knowledge you should possess in order
to write truly reproducible pipelines. This essential knowledge
is constituted of:

• Version control with Git and how to manage projects with
Github;

• Functional programming;
• Literate programming.

The main idea from part 1 is “don’t repeat yourself”. Git and
Github will help us avoid losing code, and losing track of who
should do what in a project (even if you’re working alone on a
project, you will see that using Git and Github will save you
many hours and headaches). Getting familiar with functional
and literate programming should improve the quality of our code
by avoiding two common sources of mistakes: computing results
that rely on the state of our program (and later, the state of the
whole hardware we are using) and copy and paste mistakes.

The second part of the book will then build upon this knowledge
to introduce several tools that will help us go beyond the benefits
of version control and functional and literate programming:

• Dependency management with {renv};

9

https://github.com/dmi3kno/
https://github.com/statnmap
https://github.com/MilesMcBain
https://twitter.com/dsolito
https://twitter.com/dsolito
https://github.com/matanhakim
https://github.com/skolenik
https://github.com/parmsam
https://github.com/chorgan182
https://github.com/MatousEibich
https://github.com/MatousEibich
https://github.com/jonathandmoore
https://github.com/AlainVagner
https://github.com/IZE85
https://github.com/IZE85

Preface

• Package development with {fusen};
• Unit and assertive testing;
• Build automation with {targets};
• Reproducible environments with Docker;
• Continuous integration and delivery.

While this is not a book for beginners (you really should be fa-
miliar with R before reading this), I will not assume that you
have any knowledge of the tools presented in part 2. In fact,
even if you’re already familiar with Git, Github, functional pro-
gramming and literate programming, I think that you will still
learn something useful from reading part 1. But be warned, this
book will require you to take the time to read it, and then type
on your computer. Type a lot.

I hope that you will enjoy reading this book and applying the
ideas in your day-to-day, ideas which hopefully should improve
the reliability, traceability and reproducibility of your code. You
can read this book for free on https://raps-with-r.dev/, or if
you want you can buy a DRM-free PDF or Epub over at https:
//leanpub.com/raps-with-r.

If you want to get to know me better, read my bio4.

If you have feedback, drop me an email at bruno [at] brodrigues
[dot] co.

Enjoy!

4https://www.brodrigues.co/about/me/

10

https://raps-with-r.dev/
https://leanpub.com/raps-with-r
https://leanpub.com/raps-with-r
https://www.brodrigues.co/about/me/

1. Introduction

This book will not teach you about machine learning, statistics
or visualisation.

The goal is to teach you a set of tools, practices and project
management techniques that should make your projects easier
to reproduce, replicate and retrace. These tools and techniques
can be used right from the start of your project at a minimal
cost, such that once you’re done with the analysis, you’re also
done with making the project reproducible. Your projects are
going to be reproducible simply because they were engineered,
from the start, to be reproducible.

There are two main ideas in this book that you need to keep in
mind at all times:

• DRY: Don’t Repeat Yourself;
• WIT: Write IT down.

DRY WIT is not only the best type of humour, it is also the
best way to write reproducible analytical pipelines.

1.1. Who is this book for?

This book is for anyone that uses raw data to build any type of
output based on that raw data. This can be a simple quarterly

11

1. Introduction

report for example, in which the data is used for tables and
graphs, or a scientific article for a peer reviewed journal or even
an interactive web application. It doesn’t matter, because the
process is, at its core, always very similar:

• Get the data;
• Clean the data;
• Write code to analyse the data;
• Put the results into the final product.

This book will already assume some familiarity with program-
ming, and in particular the R programming language. However,
if you’re comfortable with another programming language like
Python, you could still learn a lot from reading this book. The
tools presented in this book are specific to R, but there will al-
ways be an alternative for the language you prefer using, mean-
ing that you could apply the advice from this book to your needs
and preferences.

1.2. What is the aim of this book?

The aim of this book is to make the process of analysing data as
reliable, retraceable, and reproducible as possible, and do this
by design. This means that once you’re done with the analysis,
you’re done. You don’t want to spend time, which you often
don’t have anyways, to rewrite or refactor an analysis and make
it reproducible after the fact. We both know that this is not
going to happen. Once an analysis is done, it’s time to go to
the next analysis. And if you need to rerun an older analysis
(for example, because the data got updated), then you’ll simply
figure it out at that point, right? That’s a problem for future
you, right? Hopefully, future you will remember every quirk of

12

1.2. What is the aim of this book?

your code and know which script to run at which point in the
process, which comments are outdated and can be safely ignored,
what features of the data need to be checked (and when they
need to be checked), and so on… You better hope future you is
a more diligent worker than you!

Going forward, I’m going to refer to a project that is repro-
ducible as a “reproducible analytical pipeline”, or RAP for short.
There are only two ways to make such a RAP; either you are
lucky enough to have someone on the team whose job is to turn
your messy code into a RAP, or you do it yourself. And this
second option is very likely the most common. The issue is, as
stated above, that most of us simply don’t do it. We are always
in the rush to get to the results, and don’t think about mak-
ing the process reproducible. This is because we always think
that making the process reproducible takes time and this time
is better spent working on the analysis itself. But this is a mis-
conception, for two reasons.

The first reason is that employing the techniques that we are
going to discuss in this book won’t actually take much time. As
you will see, they’re not really things that you “add on top of the
analysis”, but will be part of the analysis itself, and they will also
help with managing the project. And some of these techniques
will even save you time (especially testing) and headaches.

The second reason is that an analysis is never, ever, a one-shot.
Only the most simple things, like pulling out a number from
some data base may be a one-shot. And even then, chances are
that once you provide that number, you’ll be asked to pull out a
variation of that number (for example, by disaggregating by one
or several variables). Or maybe you’ll get asked for an update
to that number in six months. So you will learn very quickly to
keep that SQL query in a script somewhere to make sure that
you provide a number that is consistent. But what about more

13

1. Introduction

complex analyses? Is keeping the script enough? Keeping the
script is already a good start of course. The problem is that
very often, there is no script, or not a script for each step of the
analysis.

I’ve seen this play out many times in many different organisa-
tions. It’s that time of the year again, we have to write a report.
10 people are involved, and just gathering the data is already
complicated. Some get their data from Word documents at-
tached to emails, some from a website, some from a report from
another department that is a PDF… I remember a story that a
senior manager at my previous job used to tell us: once, a client
put out a call for a project that involved helping them setting
up a PDF scraper. They periodically needed data from another
department that came in PDFs. The manager asked what was,
at least from our perspective, an obvious question: why can’t
they send you the underlying data from that PDF in a machine
readable format? They had never thought to ask. So my man-
ager went to that department, and talked to the people putting
that PDF together. Their answer? “Well, we could send them
the data in any format they want, but they’ve asked us to send
the tables in a PDF format”.

So the first, and probably most important lesson here is: when
starting to build a RAP, make sure that you talk with all the
people involved.

1.3. Prerequisites

You should be comfortable with the R programming language.
This book will assume that you have been using R for some
projects already, and want to improve not only your knowledge

14

1.4. What actually is reproducibility?

of the language itself, but also how to successfully manage com-
plex projects. Ideally, you should know about packages, how to
install them, you should have written some functions already,
know about loops and have some basic knowledge of data struc-
tures like lists. While this is not a book on visualisation, we
will be making some graphs using the {ggplot2} package, so if
you’re familiar with that, that’s good. If not, no worries, visu-
alisation, data munging or data analysis is not the point of this
book. Chapter 2, Before we start should help you gauge how
easily you will be able to follow this book.

Ideally, you should also not be afraid of not using Graphical User
Interfaces (GUIs). While you can follow along using an IDE like
RStudio, I will not be teaching any features from any program
with a GUI. This is not to make things harder than they should
be (quite the contrary actually) but because interacting graphi-
cally with a program is simply not reproducible. So our aim is
to write code that can be executed non-interactively by a ma-
chine. This is because one necessary condition for a workflow to
be reproducible and get referred to as a RAP, is for the workflow
to be able to be executed by a machine, automatically, without
any human intervention. This is the second lesson of building
RAPs: there should be no human intervention needed to get
the outputs once the RAP is started. If you achieve this, then
your workflow is likely reproducible, or can at least be made
reproducible much more easily than if it requires some special
manipulation by a human somewhere in the loop.

1.4. What actually is reproducibility?

A reproducible project means that this project can be rerun
by anyone at 0 (or very minimal) cost. But there are different

15

1. Introduction

levels of reproducibility, and I will discuss this in the next section.
Let’s first discuss some requirements that a project must have
to be considered a RAP.

1.4.1. Using open-source tools to build a RAP is
a hard requirement

Open source is a hard requirement for reproducibility.

No ifs nor buts. And I’m not only talking about the code
you typed for your research paper/report/analysis. I’m talk-
ing about the whole ecosystem that you used to type your code
and build the workflow.

Is your code open? That’s good. Or is it at least available to
other people from your organisation, in a way that they could
re-execute it if needed? Good.

But is it code written in a proprietary program, like STATA,
SAS or MATLAB? Then your project is not reproducible. It
doesn’t matter if this code is well documented and written and
available on a version control system (internally to your company
or open to the public). This project is just not reproducible.
Why?

Because on a long enough time horizon, there is no way to re-
execute your code with the exact same version of the proprietary
programming language and on the exact same version of the
operating system that was used at the time the project was
developed. As I’m writing these lines, MATLAB, for example,
is at version R2022b. And buying an older version may not
be simple. I’m sure if you contact their sales department they
might be able to sell you an older version. Maybe you can even
simply re-download older versions that you’ve already bought

16

1.4. What actually is reproducibility?

from their website. But maybe it’s not that simple. Or maybe
they won’t offer this option anymore in the future, who knows?
In any case, if you google “purchase old version of Matlab” you
will see that many researchers and engineers have this need.

Figure 1.1.: Wanting to run older versions of analytics software
is a recurrent need.

And if you’re running old code written for version, say, R2008a,
there’s no guarantee that it will produce the exact same results
on version 2022b. And let’s not even mention the toolboxes (if
you’re not familiar with MATLAB’s toolboxes, they’re the equiv-
alent of packages or libraries in other programming languages).
These evolve as well, and there’s no guarantee that you can
purchase older versions of said toolboxes. And it’s likely that

17

1. Introduction

newer versions of toolboxes cannot even run on older versions of
Matlab.

And let me be clear, what I’m describing here with MATLAB
could also be said for any other proprietary programs still com-
monly (unfortunately) used in research and in statistics (like
STATA, SAS or SPSS). And even if some, or even all, of the
editors of these proprietary tools provide ways to buy and run
older versions of their software, my point is that the fact that you
have to rely on them for this is a barrier to reproducibility, and
there is no guarantee they will provide the option to purchase
older versions forever. Also, who guarantees that the editors of
these tools will be around forever? Or, and that’s more likely,
that they will keep offering a program that you install on your
machine instead of shifting to a subscription based model?

For just $199 a month, you can execute your SAS (or whatever)
scripts on the cloud! Worry about data confidentiality? No
worries, data gets encrypted and stored safely on our secure
servers! Run your analysis from anywhere and don’t worry about
losing your work if your cat knocks over your coffee on your
laptop! And if you purchase the pro licence, for an additional
$100 a month, you can even execute your code in parallel!

Think this is science fiction? Google “SAS cloud” to see SAS’s
cloud based offering.

1.4.2. There are hidden dependencies that can
hinder the reproducibility of a project

Then there’s another problem: let’s suppose you’ve written a
nice, thoroughly tested and documented workflow, and made
it available on Github (and let’s even assume that the data is
available for people to freely download, and that the paper is

18

1.4. What actually is reproducibility?

open access). Or, if you’re working in the private sector, you
did everything above as well, the only difference being that the
workflow is only available to people inside the company instead
of being available freely and publicly online.

Let’s further assume that you’ve used R or Python, or any other
open source programming language. Could this study/analysis
be said to be reproducible? Well, if the analysis ran on a pro-
prietary operating system, then the conclusion is: your project
is not reproducible.

This is because the operating system the code runs on can
also influence the outputs that your pipeline builds. There are
some particularities in operating systems that may make certain
things work differently. Admittedly, this is in practice rarely a
problem, but it does happen1, especially if you’re working with
very high precision floating point arithmetic like you would do
in the financial sector for instance.

Thankfully, there is no need to change operating systems to deal
with this issue, and we will learn how to use Docker to safeguard
against this problem.

1.4.3. The requirements of a RAP

So where does that leave us? Basically, for something to be truly
reproducible, it has to respect the following bullet points:

• Source code must obviously be available and thoroughly
tested and documented (which is why we will be using Git
and Github);

1https://github.com/numpy/numpy/issues/9187

19

https://github.com/numpy/numpy/issues/9187

1. Introduction

• All the dependencies must be easy to find and install (we
are going to deal with this using dependency management
tools);

• To be written with an open source programming language
(nocode tools like Excel are by default non-reproducible
because they can’t be used non-interactively, and which is
why we are going to use the R programming language);

• The project needs to be run on an open source operating
system (thankfully, we can deal with this without having
to install and learn to use a new operating system, thanks
to Docker);

• Data and the paper/report need obviously to be accessible
as well, if not publicly as is the case for research, then
within your company. This means that the concept of
“scripts and/or data available upon request” belongs in
the trash.

Figure 1.2.: A real sentence from a real paper published in THE
LANCET Regional Health. How about make the
data available and I won’t scratch your car, how’s
that for a reasonable request?

1.5. Are there different types of
reproducibility?

Let’s take one step back: we live in the real world, and in the real
world, there are some constraints that are outside of our control.

20

1.5. Are there different types of reproducibility?

These constraints can make it impossible to build a true RAP,
so sometimes we need to settle for something that might not be
a true RAP, but a second or even third best thing.

In what follows, let’s assume this: in the discussion below, code
is tested and documented, so let’s only discuss the code running
the pipeline itself.

The worst reproducible pipeline would be something that works,
but only on your machine. This can be simply due to the fact
that you hardcoded paths that only exist on your laptop. Any-
one wanting to rerun the pipeline would need to change the
paths. This is something that needs to be documented in a
README which we assumed was the case, so there’s that. But
maybe this pipeline only runs on your laptop because the com-
putational environment that you’re using is hard to reproduce.
Maybe you use software, even if it’s open source software, that
is not easy to install (anyone that tried to install R packages
on Linux that depend on the {rJava} package know what I’m
talking about).

So a least worse pipeline would be one that could be run more
easily on any similar machine to yours. This could be achieved
by not using hardcoded absolute paths, and by providing instruc-
tions to set up the environment. For example, in the case of R,
this could be as simple as providing a script called something like
install_deps.R that would be a call to install.packages().
It could look like this:

install.packages(c("package1",
"package2",
etc))

The issue here is that you need to make sure that the right ver-
sions of the packages get installed. If your script uses {ggplot2}

21

1. Introduction

version 2.2.1, then users should install this version as well, and
by running the script above, the latest version of {ggplot2} (as
of writing, version 3.4.0) will get installed. Maybe that’s not a
problem, but it can be if your script uses a function from ver-
sion 2.2.1 that is not available anymore in the latest version (or
maybe its name got changed, or maybe it was modified somehow
and doesn’t provide the exact same result). The more packages
the script uses (and the older it is), the higher the likelihood that
some package version will not be compatible. There is also the
issue of the R version itself. Generally speaking, recent versions
of R seem to not be too bad when it comes to running older
code written in R. I know this because in 2022 I’ve run every
example that comes bundled with R since version 0.6.0 on the
then current version (as of writing) of R, version 4.2.2.

22

1.5. Are there different types of reproducibility?

Here is the result of this experiment:

Figure 1.3.: Examples from older versions of R run most of the
time successfully on the current version of R

This graph shows the following: for each version of R, starting
with R version 0.6.0 (released in 1997), how well the examples
that came with a standard installation of R run on the current
version of R (version 4.2.2 as of writing). These are the examples
from the default packages like {base}, {stats}, {stats4}, and
so on. Turns out that more than 75% of the example code from
version 0.6.0 still work on the current version of R. A small
fraction output a message (which doesn’t mean the code doesn’t
work), some 5% raise a warning, which again doesn’t necessarily
mean that the code doesn’t work, and finally around 20% or so
produce errors. As you can see, the closer we get to the current

23

1. Introduction

release, the fewer errors get raised (if you want to run the code
for yourself, check out this Github repository2).

(But something important should be noted: just because some
old piece of code runs without error, doesn’t mean that the
result is exactly the same. There might be cases where the same
function returns different results on different versions of R.)

While this is evidence of R itself being quite stable through time,
there are studies that show a less rosy picture. In a recent study
(Trisovic et al. (2022) 3), some researchers tried to rerun up to
9000 R scripts downloaded from the Harvard Dataverse. There
were several issues when trying to rerun the scripts, which lead
to, and I quote the paper here, “[…] 74% of R files [failing] to
complete without error in the initial execution, while 56% failed
when code cleaning was applied, showing that many errors can
be prevented with good coding practices”.

The take-away message is that counting on the language itself
being stable through time as a sufficient condition for repro-
ducibility is not enough. We have to set up the code in a way
that it actually is reproducible.

So what does this all mean? This means that reproducibility is
on a continuum, and depending on the constraints you face your
project can be “not very reproducible” to “totally reproducible”.
Let’s consider the following list of anything that can influence
how reproducible your project truly is:

• Version of the programming language used;
• Versions of the packages/libraries of said programming lan-

guage used;
• Operating System, and its version;

2https://github.com/b-rodrigues/code_longevity
3https://www.nature.com/articles/s41597-022-01143-6

24

https://github.com/b-rodrigues/code_longevity

1.5. Are there different types of reproducibility?

• Versions of the underlying system libraries (which often go
hand in hand with OS version, but not necessarily).

• And even the hardware architecture that you run all that
software stack on.

So by “reproducibility is on a continuum”, what I mean is that
you could set up your project in a way that none, one, two, three,
four or all of the preceding items are taken into consideration
when making your project reproducible.

This is not a novel, or new idea. Peng (2011) already discussed
this concept but named it the reproducibility spectrum. In part
2 of this book, I will reintroduce the idea and call it the “repro-
ducibility iceberg”.

Figure 1.4.: The reproducibility spectrum from Peng’s 2011 pa-
per.

Let me just finish this introduction by discussing the last item
on the previous list: hardware architecture. You see, Apple has
changed the hardware architecture of their computers recently.
Their new computers don’t use Intel based hardware anymore,
but instead Apple’s own proprietary architecture (Apple Silicon)
based on the ARM specification. And what does that mean con-
cretely? It means that all the binary packages that were built for
Intel based Apple computers cannot run on their new computers

25

1. Introduction

(at least not without a compatibility layer). Which means that
if you have a recent M1 or M2 Macbook and need to install old
CRAN packages to rerun a project (and we will learn how to
do this later in the book), these need to be compiled to work
on Apple Silicon first. You cannot even install older versions of
R, unless you also compile those from source! Now I have read
about a compatibility layer called Rosetta which enables to run
binaries compiled for the Intel architecture on the ARM archi-
tecture, and maybe this works well with R and CRAN binaries
compiled for Intel architecture. Maybe, I don’t know. But my
point is that you never know what might come in the future, and
thus needing to be able to compile from source is important, be-
cause compiling from source is what requires the least amount of
dependencies that are outside of your control. Relying on bina-
ries is not future-proof (and which is again, another reason why
open-source tools are a hard requirement for reproducibility).

And for you Windows users, don’t think that the preceding para-
graph does not concern you. I think that it is very likely that
Microsoft will push in the future for OEM manufacturers to
build more ARM based computers. There is already an ARM
version of Windows after all, and it has been around for quite
some time, and I think that Microsoft will not kill that version
any time in the future. This is because ARM is much more
energy efficient than other architectures, and any manufacturer
can build its own ARM cpus by purchasing a license, which can
be quite interesting from a business perspective. For example in
the case of Apple Silicon cpus, Apple can now get exactly the
cpus they want for their machines and make their software work
seamlessly with it (also, further locking in their users to their
hardware). I doubt that others will pass the chance to do the
same.

Also, something else that might happen is that we might move

26

1.5. Are there different types of reproducibility?

towards more and more cloud based computing, but I think that
this scenario is less likely than the one from before. But who
knows. And in that case it is quite likely that the actual code
will be running on Linux servers that will likely be ARM based
because of energy and licensing costs. Here again, if you want
to run your historical code, you’ll have to compile old packages
and R versions from source.

Ok, so this might seem all incredibly complicated. How on earth
are we supposed to manage all these risks and balance the im-
mediate need for results with the future need of rerunning an
old project? And what if rerunning this old project is not even
needed in the future?

This is where this book will help you. By employing the tech-
niques discussed in this book, not only will it be very easy and
quick to set up a project from the ground up that is truly repro-
ducible, the very fact of building the project this way will also
ensure that you avoid mistakes and producing results that are
wrong. It will be easier and faster to iterate and improve your
code, to collaborate, and ultimately to trust the results of your
pipelines. So even if no one will rerun that code ever again, you
will still benefit from the best practices presented in this book.
Let’s dive in!

27

Part I.

Part 1: Don’t Repeat
Yourself

29

Introduction

The first idea we are going to focus on is Don’t Repeat Yourself.
Simply by avoiding having to repeat yourself, you will naturally
implement best practices to make your pipelines reproducible.

Introduction

Part 1 will focus on teaching you the fundamental ingredients
to reproducibility. By fundamental ingredients I mean those
tools that you absolutely need to have in your toolbox before
even attempting to make a project reproducible. These tools
are so important that a good chunk of this book is dedicated to
them:

• Version control;
• Functional programming;
• Literate programming.

You might already be familiar with these topics, and maybe
already use them in your day to day. If that’s the case, you still
might want to at least skim part 1 before tackling part 2 of the
book, which will focus on another set of tools to actually build
reproducible analytical pipelines (RAPs).

So this means that part 1 will not teach you how to build re-
producible pipelines. But I cannot immediately start teaching
you how to build reproducible analytical pipelines without first
making sure that you understand the core concepts laid out
above. To help you understand these concepts, we will start
by analysing some data together. We are going to download,
clean and plot some data, and we will achieve this by writing
two scripts. These scripts will be written in a very typical non-
“software engineery” way, as to mimic how analysts, data sci-
entists or researchers without any formal training in computer

31

science would perform such an analysis. This does not mean
that the quality of the analysis will be low. But it means that,
typically, these programmers have delievering results fast, and
by any means necessary, as their top priority. My goal with this
book is to show you, and hopefully convince you, that by adopt-
ing certain simple ideas from software engineering it is possible
to deliver just as fast as before, but in a more consistent and
robust way.

32

2. Before we start

This is not an introductory book, so before tackling the topics
presented here, make sure that you are familiar with the different
topics presented below. If you read this chapter and everything
is obvious or known to you, then you should have no trouble
following along. If instead what you read here is cryptic, then
take some time to improve your understanding of these topics
first.

2.1. Essential knowledge

It’s important to know the parts that constitute R. Let’s make
something clear: R is not RStudio, or whatever interface you are
using to interact with R. R is a domain-specific interpreted pro-
gramming language. R is domain-specific because its primary
use is in performing statistics. Interpreted, because results get
returned immediately when you execute a script in the console.
In other words, when you write 1+1 in the console, you get back
2 immediately. There are programming languages, called com-
piled programming languages, that require code to be compiled
into binaries before execution. C is such a language. The fact
that R is interpreted makes interactive exploratory data anal-
ysis easy, but also introduces certain negative aspects. I will
discuss these in detail in the book. R’s console is an example of
a REPL – Read-Eval-Print-Loop – environment. Code gets read,

33

2. Before we start

evaluated, printed and the read state gets returned, starting the
loop over.

To make working with R easier, you should not write code in the
console and execute it, but instead write it in a text file. You can
keep these text files, update and share them with collaborators.
Such text files are called scripts. You could write these scripts
using the most basic text editor included in your operating sys-
tem (that would be Notepad.exe on Windows for example), but
you should instead use a text editor made specifically to make
programming easier. Popular choices among R users include
RStudio, Visual Studio Code, or maybe something more exotic
like Emacs combined with ESS (my personal choice). Whatever
text editor you choose, take time to configure it and learn how
to use it. You will spend many, many, many hours inside that
text editor. The code you write in that text editor is what’s go-
ing to feed you and your family. Learn your chosen text editor’s
keyboard shortcuts and other advanced features. This initial in-
vestment will pay for itself many times over. Also, you need to
know what an actual text file is. A document written in Word
(with the .docx extension) is not a text file. It looks like text,
but is not. The .docx format is a much more complex format
with many layers of abstraction. “True” plain text files can be
opened with the simplest text editor included in your operating
system. I’ve had students trying to create text files with word
processors like MS Word and then being confused when things
would not work.

As stated before, R is a domain-specific programming language
mainly used for doing statistics, or whatever modernized term
you may prefer like “data science”. Its base capabilities can
be extended by installing packages. For example, a base in-
stallation of R provides you with useful functions like mean()
or sd(), to compute the average or standard deviation of a

34

2.1. Essential knowledge

vector of numbers, or rnorm() to compute random variates
from a Gaussian (Normal) distribution. However, there is no
function available to train a random forest. If you need to
train a random forest you need to install a package using the
install.packages("randomForest") command. This installs
the {randomForest} package (in the rest of the book, I will
surround package names with curly braces). The collection of
packages installed is called a “library”. Packages get downloaded
from CRAN, the Comprehensive R Archive Network. There is
no doubt in my mind that the reason R became so popular is
because it is quite easy to write packages for it; and this is
something that we will learn as well! Some packages are writ-
ten with other programming languages, very often Fortran or
C++. The code included in these packages is then compiled
and can be executed by R using a user-facing function. For ex-
ample, if you dig into the source code of the {randomForest}
package, you will find C and Fortran code. This is important
to know, because sometimes R packages need to be compiled by
install.packages(), and this compilation can sometimes fail
(especially on Linux, but more on that later in the book).

When you use R, you will load data sets, create plots, train
models, etc. These data sets, plots, models, are all objects and
they get saved in the global environment. To see a list of objects
currently available in the global environment, type ls() in the R
console. When you quit R, you get asked to save the workspace:
this will save the current state of the global environment and
load it next time you start R. I highly recommend for you to
not save the workspace. If you are using RStudio you can change
this behaviour in the global options (under Workspace, set Save
workspace to .RData on exit to Never). Other editors might
have a similar option. Saving and loading the workspace makes
it impossible to start with a fresh R session (unless you start
R with the --vanilla flag), which can cause issues that are

35

2. Before we start

difficult to pinpoint.

You should also be comfortable with paths and your computer’s
file system. Comfortable means having no problems finding
where a file gets downloaded for example, or being able to navi-
gate to any folder, either through a GUI file browser or through
a terminal (if you’re familiar with navigating your computer us-
ing the terminal, you will have an easier time with this book
than if you didn’t). I also highly recommend that you strive to
use relative paths in your scripts, and not absolute paths. In
other words: don’t start your scripts with a line such as:

setwd("H:/Username/Projects/housing_regression/")

but instead, use “Projects” if you’re using RStudio, or similar
features from your preferred IDE. This way, you can use relative
paths instead. This makes collaboration much easier. Using
“Projects” in RStudio, if you need to load data, you can simply
write:

dataset <- read.csv("data.csv")

and don’t need to set working directories using setwd(), which
obviously will not exist on your collaborators computer.

There is also the {here} package that makes using relative paths
easier, but I won’t discuss it in this book. If you’re interested
you can read this post1.

You should be familiar with writing functions. This book has a
whole chapter on functional programming, and I will teach you
how to write functions, but if you’re already familiar with this,
then it will make going through that chapter easier.

1https://github.com/jennybc/here_here

36

https://github.com/jennybc/here_here

2.1. Essential knowledge

Finally, you should know how to ask for help. If you need help
with this book, feel free to open an issue on the book’s Github
repo here2, or open a thread on the book’s Leanpub forum (if you
bought a copy) over here3. Just like for this book, if you have an
issue with an R package, look for its repository: many packages’
source code is hosted on Github (but not always). You can also
try to reach out to the author, or open a thread on Stackoverflow.
Whatever you do, make sure that you do your homework first:

• Read the documentation. Maybe you’re using the tool
wrong.

• Take note of the error message. Error messages can be
cryptic sometimes, but as you gain in experience, you will
learn to decrypt them.

• Write down the simplest script possible that reproduces
the issue you’re facing. This is called an MRE, “Minimal
Reproducible Example”. If you need to open a thread
asking for help, post this MRE, this will make helping you
much easier. For general advice on how to write an MRE,
you can read this classic blog post4.

Finally, keep in mind the following saying from my father, a
mason (the ones that lay bricks, not the ones meeting in secrecy
to govern the world):

The tools are always right. If you’re using a tool
and it’s not behaving as expected, it is much more
likely that your expectations are wrong. Take this
opportunity to review your knowledge of the tool.

2https://github.com/b-rodrigues/rap4all
3https://community.leanpub.com/c/raps-with-r/
4https://jonskeet.uk/csharp/complete.html

37

https://github.com/b-rodrigues/rap4all
https://community.leanpub.com/c/raps-with-r/
https://jonskeet.uk/csharp/complete.html

3. Project start

In this chapter, we are going to work together on a very simple
project. This project will stay with us until the end of the book.
As we will go deeper into the book together, you will rewrite that
project by implementing the techniques I will teach you. By the
end of the book you will have built a reproducible analytical
pipeline. To get things going, we are going to keep it simple;
our goal here is to get an analysis done, that’s it. We won’t
focus on reproducibility. We are going to download some data,
and analyse it, that’s it.

3.1. Housing in Luxembourg

We are going to download data about house prices in Luxem-
bourg. Luxembourg is a little Western European country the
author hails from that looks like a shoe and is about the size
of .98 Rhode Islands. Did you know that Luxembourg is a con-
stitutional monarchy, and not a kingdom like Belgium, but a
Grand-Duchy, and actually the last Grand-Duchy in the World?
Also, what you should know to understand what we will be do-
ing is that the country of Luxembourg is divided into Cantons,
and each Cantons into Communes. If Luxembourg was the USA,
Cantons would be States and Communes would be Counties (or
Parishes or Boroughs). What’s confusing is that “Luxembourg”
is also the name of a Canton, and of a Commune, which also has

39

3. Project start

the status of a city and is the capital of the country. So Lux-
embourg the country, is divided into Cantons, one of which is
called Luxembourg as well, cantons are divided into communes,
and inside the canton of Luxembourg, there’s the commune of
Luxembourg which is also the city of Luxembourg, sometimes
called Luxembourg City, which is the capital of the country.

Figure 3.1.: Luxembourg is about as big as the US State of
Rhode Island.

What you should also know is that the population is about
645,000 as of writing (January 2023), half of which are foreign-
ers. Around 400,000 persons work in Luxembourg, of which half
do not live in Luxembourg; so every morning from Monday to
Friday, 200,000 people enter the country to work and then leave
in the evening to go back to either Belgium, France or Germany,
the neighbouring countries. As you can imagine, this puts enor-
mous pressure on the transportation system and on the roads,

40

3.1. Housing in Luxembourg

but also on the housing market; everyone wants to live in Luxem-
bourg to avoid the horrible daily commute, and everyone wants
to live either in the capital city, or in the second largest urban
area in the south, in a city called Esch-sur-Alzette.

The plot below shows the value of the House Price Index over
time for Luxembourg and the European Union:

90

120

150

180

210

2010 2015 2020
TIME_PERIOD

O
B

S
_V

A
LU

E

geo EU LU

House price and sales index (2010 = 100)

Source: Eurostat

If you want to download the data, click here1.

Let us paste the definition of the HPI in here (taken from the
HPI’s metadata2 page):

The House Price Index (HPI) measures inflation in the residen-
tial property market. The HPI captures price changes of all types
of dwellings purchased by households (flats, detached houses, ter-
raced houses, etc.). Only transacted dwellings are considered,

1https://is.gd/AET0ir
2https://archive.is/OrQwA, archived link for posterity.

41

https://github.com/b-rodrigues/rap4all/raw/master/datasets/prc_hpi_a__custom_4705395_page_linear.csv.gz
https://archive.is/OrQwA

3. Project start

self-build dwellings are excluded. The land component of the
dwelling is included.

So from the plot, we can see that the price of dwellings more
than doubled between 2010 and 2021; the value of the index is
214.81 in 2021 for Luxembourg, and 138.92 for the European
Union as a whole.

There is a lot of heterogeneity though; the capital and the com-
munes right next to the capital are much more expensive than
communes from the less densely populated north, for example.
The south of the country is also more expensive than the north,
but not as much as the capital and surrounding communes. Not
only is price driven by demand, but also by scarcity; in 2021,
0.5% of residents owned 50% of the buildable land for housing
purposes (Source: Observatoire de l’Habitat, Note 29, archived
download link3).

Our project will be quite simple; we are going to download some
data, supplied as an Excel file, compiled by the Housing Obser-
vatory (Observatoire de l’Habitat, a service from the Ministry
of Housing, which monitors the evolution of prices in the hous-
ing market, among other useful services like the identification
of vacant lots). The advantage of their data when compared to
Eurostat’s data is that the data is disaggregated by commune.
The disadvantage is that they only supply nominal prices, and
no index (and the data is trapped inside Excel and not ready for
analysis with R). Nominal prices are the prices that you read on
price tags in shops. The problem with nominal prices is that it
is difficult to compare them through time. Ask yourself the fol-
lowing question: would you prefer to have had 500€ (or USDs)
in 2003 or in 2023? You probably would have preferred them in
2003, as you could purchase a lot more with $500 then than now.

3https://archive.org/download/note-29/note-29.pdf

42

https://archive.org/download/note-29/note-29.pdf
https://archive.org/download/note-29/note-29.pdf

3.1. Housing in Luxembourg

In fact, according to a random inflation calculator I googled, to
match the purchasing power of $500 in 2003, you’d need to have
$793 in 2023 (and I’d say that we find very similar values for €).
But it doesn’t really matter if that calculation is 100% correct:
what matters is that the value of money changes, and compar-
isons through time are difficult, hence why an index is quite
useful. So we are going to convert these nominal prices to real
prices. Real prices take inflation into account and so allow us to
compare prices through time.

So to summarise; our goal is to:

• Get data trapped inside an Excel file into a neat data
frame;

• Convert nominal to real prices using a simple method;
• Make some tables and plots and call it a day (for now).

We are going to start in the most basic way possible; we are sim-
ply going to write a script and deal with each step separately.

43

3. Project start

3.2. Saving trapped data from Excel

Getting data from Excel into a tidy data frame can be very
tricky. This is because very often, Excel is used as some kind
of dashboard or presentation tool. So data is made human-
readable, in contrast to machine-readable. Let us quickly dis-
cuss this topic as it is essential to grasp the difference between
the two (and in our experience, a lot of collective pain inflicted
to statisticians and researchers could have been avoided if this
concept was more well-known). The picture below shows an
Excel file made for human consumption:

Figure 3.2.: An Excel file meant for human eyes.

So why is this file not machine-readable? Here are some issues:

44

3.2. Saving trapped data from Excel

• The table does not start in the top-left corner of the spread-
sheet, which is where most importing tools expect it to be;

• The spreadsheet starts with a header that contains an im-
age and some text;

• Numbers are text and use “,” as the thousands separator;
• You don’t see it in the screenshot, but each year is in a

separate sheet.

That being said, this Excel file is still very tame, and going
from this Excel to a tidy data frame will not be too difficult.
In fact, we suspect that whoever made this Excel file is well
aware of the contradicting requirements of human and machine-
readable formatting of data, and strove to find a compromise.
Because more often than not, getting human-readable data into
a machine-readable format is a nightmare. We could call data
like this machine-friendly data.

If you want to follow along, you can download the Excel file here4

(downloaded on January 2023 from the luxembourguish open
data portal5). But you don’t need to follow along with code,
because I will link the completed scripts for you to download
later.

Each sheet contains a dataset with the following columns:

• Commune: the commune (the smallest administrative di-
vision of territory);

• Nombre d’offres: the total number of selling offers;
• Prix moyen annoncé en Euros courants: Average selling

price in nominal Euros;
• Prix moyen annoncé au m2 en Euros courants: Average

selling price in square meters in nominal Euros.
4https://is.gd/1vvBAc
5https://data.public.lu/en/datasets/prix-annonces-des-logements-par-

commune/

45

https://github.com/b-rodrigues/rap4all/raw/master/datasets/vente-maison-2010-2021.xlsx
https://data.public.lu/en/datasets/prix-annonces-des-logements-par-commune/
https://data.public.lu/en/datasets/prix-annonces-des-logements-par-commune/

3. Project start

For ease of presentation, I’m going to show you each step of the
analysis here separately, but I’ll be putting everything together
in a single script once I’m done explaining each step. So first,
let’s load some packages:

library(dplyr)
library(purrr)
library(readxl)
library(stringr)
library(janitor)

Even though this book is not about analysing data per se, let me
just briefly explain what these packages do, in case you’re not
familiar with them. The {dplyr} package provides many func-
tions for data manipulation, for example aggregating group-wise.
{purrr} is a package for functional programming, a program-
ming paradigm that I’ll introduce later in the book, {readxl}
reads in Excel workbooks, {stringr} is a package for manipu-
lating strings, and finally {janitor} (Firke 2023) provides some
very nice functions, to perform some common tasks like easily
rename every column of a data frame in snake case.

Next, the code below downloads the data, and puts it in a data
frame:

The url below points to an Excel file
hosted on the book’s github repository
url <- "https://is.gd/1vvBAc"

raw_data <- tempfile(fileext = ".xlsx")

download.file(url, raw_data,
method = "auto",

46

3.2. Saving trapped data from Excel

mode = "wb")

sheets <- excel_sheets(raw_data)

read_clean <- function(..., sheet){
read_excel(..., sheet = sheet) |>
mutate(year = sheet)

}

raw_data <- map(
sheets,
~read_clean(raw_data,

skip = 10,
sheet = .)

) |>
bind_rows() |>
clean_names()

raw_data <- raw_data |>
rename(
locality = commune,
n_offers = nombre_doffres,
average_price_nominal_euros =

prix_moyen_annonce_en_courant,↪

average_price_m2_nominal_euros =
prix_moyen_annonce_au_m2_en_courant,↪

average_price_m2_nominal_euros =
prix_moyen_annonce_au_m2_en_courant↪

) |>
mutate(locality = str_trim(locality)) |>
select(year, locality, n_offers,

starts_with("average"))↪

47

3. Project start

If you are familiar with the {tidyverse} (Wickham et al. 2019)
the above code should be quite easy to follow. We start by
downloading the raw Excel file and saving the sheet names into
a variable. We then use a function called read_clean(), which
takes the path to the Excel file and the sheet names as an ar-
gument to read the required sheet into a data frame. We use
skip = 10 to skip the first 10 lines in each Excel sheet because
the first 10 lines contain a header. The last thing this function
does is add a new column called year which contains the year
of the data. We’re lucky because the sheet names are the years:
“2010”, “2011” and so on. We then map this function to the list
of sheet names, thus reading in all the data from all the sheets
into one list of data frames. We then use bind_rows(), to bind
each data frame into a single data frame, by row. Finally, we
rename the columns (by translating their names from French
to English) and only select the required columns. If you don’t
understand each step of what is going on, don’t worry too much
about it; this book is not about learning how to use R.

Running this code results in a neat data set:

raw_data

A tibble: 1,343 x 5
year locality n_offers
average_price_nominal_euros
<chr> <chr> <dbl> <chr>

1 2010 Bascharage 192 593698.31000000006
2 2010 Beaufort 266 461160.29
3 2010 Bech 65 621760.22
4 2010 Beckerich 176 444498.68
5 2010 Berdorf 111 504040.85
6 2010 Bertrange 264 795338.87
7 2010 Bettembourg 304 555628.29

48

3.2. Saving trapped data from Excel

8 2010 Bettendorf 94 495074.38
9 2010 Betzdorf 119 625914.47

10 2010 Bissen 70 516465.57
i 1,333 more rows
i 1 more variable: average_price_m2_nominal_euros
<chr>

But there’s a problem: columns that should be of type numeric
are of type character instead (average_price_nominal_euros
and average_price_m2_nominal_euros). There’s also another
issue, which you would eventually catch as you’ll explore the
data: the naming of the communes is not consistent. Let’s take
a look:

raw_data |>
filter(grepl("Luxembourg", locality)) |>
count(locality)

A tibble: 2 x 2
locality n
<chr> <int>

1 Luxembourg 9
2 Luxembourg-Ville 2

We can see that the city of Luxembourg is spelled in two different
ways. It’s the same with another commune, Pétange:

raw_data |>
filter(grepl("P.tange", locality)) |>
count(locality)

A tibble: 2 x 2
locality n

49

3. Project start

<chr> <int>
1 Petange 9
2 Pétange 2

So sometimes it is spelled correctly, with an “é”, sometimes not.
Let’s write some code to correct both these issues:

raw_data <- raw_data |>
mutate(
locality = ifelse(grepl("Luxembourg-Ville",

locality),↪

"Luxembourg",
locality),

locality = ifelse(grepl("P.tange",
locality),↪

"Pétange",
locality)

) |>
mutate(across(starts_with("average"),

as.numeric))

Warning: There were 2 warnings in `mutate()`.
The first warning was:
i In argument: `across(starts_with("average"),
as.numeric)`.

Caused by warning:
! NAs introduced by coercion
i Run `dplyr::last_dplyr_warnings()` to see the 1
remaining
warning.

Now this is interesting – converting the average columns to
numeric resulted in some NA values. Let’s see what happened:

50

3.2. Saving trapped data from Excel

raw_data |>
filter(is.na(average_price_nominal_euros))

A tibble: 290 x 5
year locality n_offers
average_price_nomina~1
<chr> <chr> <dbl>
<dbl>

1 2010 Consthum 29
NA
2 2010 Esch-sur-Sûre 7
NA
3 2010 Heiderscheid 29
NA
4 2010 Hoscheid 26
NA
5 2010 Saeul 14
NA
6 2010 <NA> NA
NA
7 2010 <NA> NA
NA
8 2010 Total d'offres 19278
NA
9 2010 <NA> NA
NA

10 2010 Source : Ministère~ NA
NA
i 280 more rows
i abbreviated name: 1: average_price_nominal_euros
i 1 more variable: average_price_m2_nominal_euros
<dbl>

51

3. Project start

It turns out that there are no prices for certain communes, but
that we also have some rows with garbage in there. Let’s go
back to the raw data to see what this is about:

Figure 3.3.: Always look at your data.

So it turns out that there are some rows that we need to re-
move. We can start by removing rows where locality is miss-
ing. Then we have a row where locality is equal to “Total
d’offres”. This is simply the total of every offer from every
commune. We could keep that in a separate data frame, or
even remove it. The very last row states the source of the
data and we can also remove it. Finally, in the screenshot
above, we see another row that we don’t see in our filtered
data frame: one where n_offers is missing. This row gives the
national average for columns average_prince_nominal_euros
and average_price_m2_nominal_euros. What we are going to
do is create two datasets: one with data on communes, and the
other on national prices. Let’s first remove the rows stating the
sources:

52

3.2. Saving trapped data from Excel

raw_data <- raw_data |>
filter(!grepl("Source", locality))

Let’s now only keep the communes in our data:

commune_level_data <- raw_data |>
filter(!grepl("nationale|offres", locality),

!is.na(locality))

And let’s create a dataset with the national data as well:

country_level <- raw_data |>
filter(grepl("nationale", locality)) |>
select(-n_offers)

offers_country <- raw_data |>
filter(grepl("Total d.offres", locality)) |>
select(year, n_offers)

country_level_data <- full_join(country_level,
offers_country) |>↪

select(year, locality, n_offers, everything())
|>↪

mutate(locality = "Grand-Duchy of Luxembourg")

Joining with `by = join_by(year)`

Now the data looks clean, and we can start the actual analysis…
or can we? Before proceeding, it would be nice to make sure
that we got every commune in there. For this, we need a list of
communes from Luxembourg. Thankfully, Wikipedia has such

53

https://en.wikipedia.org/wiki/List_of_communes_of_Luxembourg
https://en.wikipedia.org/wiki/List_of_communes_of_Luxembourg

3. Project start

a list6.

An issue with scraping tables off the web is that they might
change in the future. It is therefore a good idea to save the
page by right clicking on it and then selecting save as, and then
re-hosting it. I use Github pages to re-host the Wikipedia page
above here7. I now have full control of this page, and won’t
get any bad surprises if someone decides to eventually update it.
Instead of re-hosting it, you could simply save it as any other
file of your project.

So let’s scrape and save this list:

current_communes <- "https://is.gd/lux_communes"
|>↪

rvest::read_html() |>
rvest::html_table() |>
purrr::pluck(2) |>
janitor::clean_names() |>
dplyr::filter(name_2 != "Name") |>
dplyr::rename(commune = name_2) |>
dplyr::mutate(commune =
stringr::str_remove(commune, " .$"))↪

We scrape the table from the re-hosted Wikipedia page using
{rvest}. rvest::html_table() returns a list of tables from
the Wikipedia table, and then we use purrr::pluck() to keep
the second table from the website, which is what we need (I made
the calls to the packages explicit, because you might not be famil-
iar with these packages). janitor::clean_names() transforms
column names written for human eyes into machine-friendly
names (for example Growth rate in % would be transformed

6https://w.wiki/6nPu
7https://is.gd/lux_communes

54

https://en.wikipedia.org/wiki/List_of_communes_of_Luxembourg
https://en.wikipedia.org/wiki/List_of_communes_of_Luxembourg
https://b-rodrigues.github.io/list_communes/

3.2. Saving trapped data from Excel

to growth_rate_in_percent) and then I use the {dplyr} pack-
age for some further cleaning and renaming; the very last step
removes a dagger symbol next to certain communes names, in
other words it turns “Commune †” into “Commune”.

Let’s see if we have all the communes in our data:

setdiff(unique(commune_level_data$locality),
current_communes$commune)

[1] "Bascharage" "Boevange-sur-Attert"
[3] "Burmerange" "Clémency"
[5] "Consthum" "Ermsdorf"
[7] "Erpeldange" "Eschweiler"
[9] "Heiderscheid" "Heinerscheid"

[11] "Hobscheid" "Hoscheid"
[13] "Hosingen" "Luxembourg"
[15] "Medernach" "Mompach"
[17] "Munshausen" "Neunhausen"
[19] "Rosport" "Septfontaines"
[21] "Tuntange" "Wellenstein"
[23] "Kaerjeng"

We see many communes that are in our commune_level_data,
but not in current_communes. There’s one obvious reason: dif-
ferences in spelling, for example, “Kaerjeng” in our data, but
“Käerjeng” in the table from Wikipedia. But there’s also a less
obvious reason; since 2010, several communes have merged into
new ones. So there are communes that are in our data in 2010
and 2011, but disappear from 2012 onwards. So we need to do
several things: first, get a list of all existing communes from
2010 onwards, and then, harmonise spelling. Here again, we can
use a list from Wikipedia, and here again, I decide to re-host it
on Github pages to avoid problems in the future:

55

3. Project start

former_communes <-
"https://is.gd/lux_former_communes" |>↪

rvest::read_html() |>
rvest::html_table() |>
purrr::pluck(3) |>
janitor::clean_names() |>
dplyr::filter(year_dissolved > 2009)

former_communes

A tibble: 20 x 3
name year_dissolved reason
<chr> <int> <chr>

1 Bascharage 2011 merged to form
Käerje~
2 Boevange-sur-Attert 2018 merged to form
Helper~
3 Burmerange 2011 merged into
Schengen
4 Clemency 2011 merged to form
Käerje~
5 Consthum 2011 merged to form
Parc H~
6 Ermsdorf 2011 merged to form
Vallée~
7 Eschweiler 2015 merged into
Wiltz
8 Heiderscheid 2011 merged into
Esch-sur-~
9 Heinerscheid 2011 merged into
Clervaux

10 Hobscheid 2018 merged to form
Habscht

56

3.2. Saving trapped data from Excel

11 Hoscheid 2011 merged to form
Parc H~
12 Hosingen 2011 merged to form
Parc H~
13 Mompach 2018 merged to form
Rospor~
14 Medernach 2011 merged to form
Vallée~
15 Munshausen 2011 merged into
Clervaux
16 Neunhausen 2011 merged into
Esch-sur-~
17 Rosport 2018 merged to form
Rospor~
18 Septfontaines 2018 merged to form
Habscht
19 Tuntange 2018 merged to form
Helper~
20 Wellenstein 2011 merged into
Schengen

As you can see, since 2010 many communes have merged to form
new ones. We can now combine the list of current and former
communes, as well as harmonise their names:

communes <- unique(c(former_communes$name,
current_communes$commune))

we need to rename some communes

Different spelling of these communes between
wikipedia and the data↪

57

3. Project start

communes[which(communes == "Clemency")] <-
"Clémency"↪

communes[which(communes == "Redange")] <-
"Redange-sur-Attert"↪

communes[which(communes ==
"Erpeldange-sur-Sûre")] <- "Erpeldange"↪

communes[which(communes == "Luxembourg City")]
<- "Luxembourg"↪

communes[which(communes == "Käerjeng")] <-
"Kaerjeng"↪

communes[which(communes == "Petange")] <-
"Pétange"↪

Let’s run our test again:

setdiff(unique(commune_level_data$locality),
communes)

character(0)

Great! When we compare the communes that are in our data
with every commune that has existed since 2010, we don’t have
any commune that is unaccounted for. So are we done with
cleaning the data? Yes, we can now start with analysing the
data. Take a look here8 to see the finalised script. Also read
some of the comments that I’ve added. This is a typical R script,
and at first glance, one might wonder what is wrong with it.
Actually, not much, but the problem if you leave this script as it
is, is that it is very likely that we will have problems rerunning
it in the future. As it turns out, this script is not reproducible.
But we will discuss this in much more detail later on. For now,
let’s analyse our cleaned data.

8https://is.gd/7PhUjd

58

https://raw.githubusercontent.com/b-rodrigues/rap4all/master/scripts/save_data.R

3.3. Analysing the data

3.3. Analysing the data

We are now going to analyse the data. The first thing we are
going to do is compute a Laspeyeres price index. This price
index allows us to make comparisons through time; for exam-
ple, the index at year 2012 measures how much more expensive
(or cheaper) housing became relative to the base year (2010).
However, since we only have one ‘good’ (housing), this index
becomes quite simple to compute: it is nothing but the prices at
year t divided by the prices in 2010 (if we had a basket of goods,
we would need to use the Laspeyeres index formula to compute
the index at all periods).

For this section, I will perform a rather simple analysis. I will
immediately show you the R script: take a look at it here9. For
the analysis I selected 5 communes and plotted the evolution of
prices compared to the national average.

This analysis might seem trivially simple, but it contains all the
needed ingredients to illustrate everything else that I’m going
to teach you in this book.

Most analyses would stop here: after all, we have what we need;
our goal was to get the plots for the 5 communes of Luxembourg,
Esch-sur-Alzette, Mamer, Schengen (which gave its name to the
Schengen Area10) and Wincrange. However, let’s ask ourselves
the following important questions:

• How easy would it be for someone else to rerun the analy-
sis?

• How easy would it be to update the analysis once new data
gets published?

• How easy would it be to reuse this code for other projects?
9https://is.gd/qCJEbi

10https://en.wikipedia.org/wiki/Schengen_Area

59

https://raw.githubusercontent.com/b-rodrigues/rap4all/master/scripts/analysis.R
https://en.wikipedia.org/wiki/Schengen_Area

3. Project start

• What guarantee do we have that if the scripts get run in 5
years, with the same input data, we get the same output?

Let’s answer these questions one by one.

3.4. Your project is not done

3.4.1. How easy would it be for someone else to
rerun the analysis?

The analysis is composed of two R scripts, one to prepare the
data, and another to actually run the analysis proper. Perform-
ing the analysis might seem quite easy, because each script con-
tains comments as to what is going on, and the code is not
that complicated. However, we are missing any project-level
documentation that would provide clear instructions as to how
to run the analysis. This might seem simple for us who wrote
these scripts, but we are familiar with R, and this is still fresh
in our brains. Should someone less familiar with R have to run
the script, there is no clue for them as to how they should do
it. And of course, should the analysis be more complex (sup-
pose it’s composed of dozens of scripts), this gets even worse. It
might not even be easy for you to remember how to run this in
5 months!

And what about the required dependencies? Many packages
were used in the analysis. How should these get installed? Ide-
ally, the same versions of the packages you used and the same
version of R should get used by that person to rerun the analy-
sis.

All of this still needs to be documented, but listing the packages
that were used for an analysis and their versions takes quite

60

3.4. Your project is not done

some time. Thankfully, in part 2, we will learn about the {renv}
package to deal with this in a couple lines of code.

3.4.2. How easy would it be to update the
project?

If new data gets published, all the points discussed previously
are still valid, plus you need to make sure that the updated data
is still close enough to the previous data such that it can pass
through the data cleaning steps you wrote. You should also
make sure that the update did not introduce a mistake in past
data, or at least alert you if that is the case. Sometimes, when
new years get added, data for previous years also get corrected,
so it would be nice to make sure that you know this. Also, in
the specific case of our data, communes might get fused into a
new one, or maybe even divided into smaller communes (even
though this has not happened in a long time, it is not entirely
out of the question).

In summary, what is missing from the current project are enough
tests to make sure that an update to the data can happen
smoothly.

3.4.3. How easy would it be to reuse this code
for another project?

Said plainly, not very easy. With code in this state you have
no choice but to copy and paste it into a new script and change
it adequately. For re-usability, nothing beats structuring your
code into functions and ideally you would even package them.
We are going to learn just that in future chapters of this book.

61

3. Project start

But sometimes you might not be interested in reusing code for
another project: however, even if that’s the case, structuring
your code into functions and packaging them makes it easy to
reuse code even inside the same project. Look at the last part of
the analysis.R script: we copied and pasted the same code 5
times and only slightly changed it. We are going to learn how not
to repeat ourselves by using functions and you will immediately
see the benefits of writing functions, even when simply reusing
them inside the same project.

3.4.4. What guarantee do we have that the
output is stable through time?

Now this might seem weird: after all, if we start from the same
dataset, does it matter when we run the scripts? We should be
getting the same result if we build the project today, in 5 months
or in 5 years. Well, not necessarily. While it is true that R is
quite stable, this cannot necessarily be said of the packages that
we use. There is no guarantee that the authors of the packages
will not change the package’s functions to work differently, or
take arguments in a different order, or even that the packages
will all be available at all in 5 years. And even if the packages are
still available and function the same, bugs in the packages might
get corrected which could alter the result. This might seem like
a non-problem; after all, if bugs get corrected, shouldn’t you
be happy to update your results as well? But this depends on
what it is we’re talking about. Sometimes it is necessary to
reproduce results exactly as they were, even if they were wrong,
for example in the context of an audit.

So we also need a way to somehow snapshot and freeze the
computational environment that was used to create the project
originally.

62

3.5. Conclusion

3.5. Conclusion

We now have a basic analysis that has all we need to get started.
In the coming chapters, we are going to learn about topics that
will make it easy to write code that is more robust, better doc-
umented and tested, and most importantly easy to rerun (and
thus to reproduce the results). The first step will actually not
involve having to start rewriting our scripts though; next, we
are going to learn about Git, a tool that will make our life easier
by versioning our code.

63

4. Version control with Git

Modern software development would be impossible without ver-
sion control systems, and the same goes for building analytical
pipelines that are reproducible and robust. It doesn’t really mat-
ter what the output of the pipeline is: a simple graph, a report
with a statistical analysis, a scientific publication, a trained ma-
chine learning model that you want to hook to an API… if the
code to the project is not versioned, you incur major risks and
the pipeline is not reproducible.

But what is version control anyway?

Version control tools make it easy to keep track of the changes
that were made to text files (like R scripts). Any change made
to any file of a project is catalogued, making it possible to trace
back how the file changed, who made the changes, and when
these changes were made. Using version control it is also quite
easy to collaborate on a project by forcing team members to
deal explicitly with the potential conflicts that might arise when
the same file got changed by different people at the same time.
Should your computer get lost, stolen, or explode, your projects
are safely backed up on a server: this is because version control
tools make use of a server which keeps track of all the changes
(and in some cases, this server is actually your team-mates’ com-
puters!)

Version control tools also make it easy to experiment with new
ideas. You can start new branches which essentially make a

65

4. Version control with Git

copy of your current project. In this new branch, you can safely
experiment with new features, and if the experiments are not
conclusive, you can simply discard this branch: the original copy
of your project will remain untouched. We will also use branches
to implement features, fix bugs quickly, and manage the project
in a paradigm called trunk-based development.

There are several version control tools out there, but Git is
undoubtedly the most popular one. You might have heard of
Github; this is a service that hosts repositories for your projects,
and provides other project management tools such as an issue
tracker, project wiki, feature requests… and also very impor-
tantly continuous integration. Don’t worry if this all sounds very
abstract: by the end of the next chapter you will have all the
basic knowledge to use Git and Github.com for your projects.

Git is a tool that you must install on your computer to get
started. Once Git is installed, you can immediately start using
it; you don’t need to open an account on Github (or a similar
service), but it is recommended to make collaboration easier (it
is possible to collaborate with several people using Git without
a service like Github, by setting up a bare repository on a server
or on a network drive you control, but this is outside the scope
of this book).

You should know that Github offers private repositories for free,
so if you don’t want your work to be accessible to the public,
that is possible. Only people that you invite to your private
repositories will be able to see the code and collaborate with
you. It is also possible that your work place has set up a self-
hosted Git platform, ask your IT department! Usually these self-
hosted platforms are Gitea or Gitlab instances. Gitea, Gitlab,
Bitbucket, Codeberg, these are all similar services to Github.
All have their advantages and disadvantages.

66

The advantages of Github are twofold:

• It has a very large community of users;
• Its continuous integration service is incredibly useful, and

free for up to 2000 minutes a month.

Disadvantages are:

• It has been bought by Microsoft in 2018;
• It is not possible to self-host an instance of Github (not

for free at least).

The fact it is owned by Microsoft may not seem like an issue,
but Microsoft’s track record of previous acquisitions is open to
question (Nokia, Skype), and the recent discussions about using
source code hosted on Github to train machine learning mod-
els (Copilot)1 can make one uneasy about relying too much on
Github.

So while we are going to use Github to host our projects in the
remainder of this book, almost everything you are going to learn
will be easily transferable to another code hosting platform such
as Gitlab or Bitbucket, should you want to switch (or if your
workplace has a self-hosted instance from one of Github’s com-
petitors). Installing and configuring Git will be exactly the same
regardless of the hosting service we use, and all the commands
we will use to actually interact with our repositories will be the
same as well. So why did I write almost everything is the same
across any of the code hosting platforms? Well, the two advan-
tages I cited above really give Github an edge; many developers,
researchers and data scientists have a Github account already
and so if one day you need to collaborate with people, chances
are they have an account on Github and not on another code
hosting platform.

1https://is.gd/rQgCj8

67

https://web.archive.org/web/20230130103241/https://www.theverge.com/2021/7/7/22561180/github-copilot-legal-copyright-fair-use-public-code
https://web.archive.org/web/20230130103241/https://www.theverge.com/2021/7/7/22561180/github-copilot-legal-copyright-fair-use-public-code
https://web.archive.org/web/20230130103241/https://www.theverge.com/2021/7/7/22561180/github-copilot-legal-copyright-fair-use-public-code

4. Version control with Git

But what really sets up Github.com apart is Github Actions,
Github’s continuous integration service. Github Actions is lit-
erally a computer in the cloud that you can use to run a set of
actions each time you interact with the repository (or at defined
moments as well). For example, it would be possible to run au-
tomated tests each time a collaborator uploads some changes to
the project. This way, we can make sure that no change intro-
duced a bug. Or take this book; each time I write and push a
new section or chapter to Github, the website, PDF and Epub
of this book get re-generated and updated automatically. Each
Github account gets 2000 minutes a month of free computing
time, which is really a lot. In part 2, we will make use of Github
Actions to run our RAP in the cloud, by simply pushing updates
to our code on Github.

By the way, if you’re using a cloud service like Dropbox,
Onedrive, and the like, DO NOT put projects tracked by Git
in them! I really need to stress this: do not track projects with
both something like Dropbox and Git. This is because Dropbox
and similar services do not deal gracefully with conflicts: if two
collaborators change the same file, Dropbox makes two copies
of the files. One of the collaborators then has to manually deal
with the conflict. The issue is that inside a project that is being
tracked by Git, there is a hidden folder with many files that get
used for synching the project and making sure that everything
runs smoothly. If you put a Git-enabled project inside a
Dropbox folder, these files will get accessed simultaneously
by different people, and Dropbox will start making copies of
these because of conflicts. This really messes up the project
and can lead to data loss. Let Git handle the tracking and
the collaborating for you. It might seem more complex than
a service like Dropbox, and it is, but it is immensely more
powerful, and what steep learning curve it might have, it more
than makes up for it with the many features it makes available

68

4.1. Installing Git and opening a Github account

at your fingertips. Unlike Dropbox (or similar services), Git
deals with conflicts not on a per-file basis, but on a per-line
basis. So if two collaborators change the same file, but different
lines of this same file, there will be no conflict: Git will handle
the merge on its own.

Finally, before starting, there is something important that you
need to understand, and people sometimes get confused by it:
if a repository is public, this does not mean that anyone can
make changes to the code. What this means is that anyone can
fork the repository (essentially making a copy of the repository
to their Github account) and then suggest some changes in a
so-called pull request. The maintainer and owner of the original
project can then accept these edits or not.

In the remainder of this chapter, you are going to learn how to set
up Git on your machine, open a Github account and start using
it right away. Then, I’m going to discuss several scenarios:

• how to collaborate, as a team, on a project;
• how to contribute to someone else’s project.

4.1. Installing Git and opening a Github
account

Git is a program that you install on your computer. If you’re
running a Linux distribution, chances are Git is already installed.
Try to run the following command in a terminal to see if this is
the case:

which git

69

4. Version control with Git

If a path like /usr/bin/git gets shown, congratulations, you
can skip the rest of this paragraph. If something like:

/usr/bin/which: no git in
(/home/username/.local/bin:
/home/username/bin:etc...)

↪

↪

gets shown instead, then this means that Git is not installed
on your system. To install Git, use your distribution’s package
manager, as it is very likely that Git is packaged for your system.
On Ubuntu, arguably the most popular Linux distribution, this
means running:

sudo apt-get update
sudo apt-get install git

If you’re using Ubuntu, you may use apt instead of apt-get.
Both commands are basically interchangeable, use whatever
you’re used to. I’ve first used Ubuntu in 2008, and even though
I don’t use it anymore as my daily Linux distro (that honor
goes to openSUSE), I still use apt-get out of habit.

On macOS and Windows, follow the instructions from the Git
Book2. It should be as easy as running an installer for any
program.

Depending on your operating system, a graphical user interface
might have been installed with Git, making it possible to inter-
act with Git outside of the command line. It is also possible to
use Git from within RStudio and many other editors have inter-
faces to Git as well. We are not going to use any graphical user
interface, however. This is because there is no common, uni-
versal graphical user interface; they all work slightly differently.

2https://is.gd/9HZqW4

70

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

4.1. Installing Git and opening a Github account

The only universal is the command line. Also, learning how to
use Git via the command line will make it easier the day you
will need to use it from a server, which will very likely happen.
It also makes my job easier: it is simpler to tell you which com-
mands to run and explain them to you than littering the book
with dozens upon dozens of screenshots that might get outdated
as soon as a new version of the interface gets released.

Don’t worry, using the command line is not as hard as it
sounds.

If you don’t already have a Github account, now is the time
to create one. Just go over to https://github.com/ and sim-
ply follow the instructions and select the free tier to open your
account.

Figure 4.1.: This is your Github dashboard.

71

https://github.com/

4. Version control with Git

In the next section, we are going to learn some basic Git com-
mands by versioning the two scripts that we wrote before.

4.2. Git superbasics

We are going to use the two scripts that we wrote in the previ-
ous section. If you want to follow along, create a folder called
housing and put the two scripts we developed before in there:

• save_data.R: https://is.gd/7PhUjd
• analysis.R: https://is.gd/qCJEbi

Open the folder that contains the two scripts in a file explorer.
On most Linux desktop environments you should be able to
right-click inside that folder anywhere on a blank space and
select an option titled something like “Open Terminal here”. If
you’re using Windows, you can pretty much do the same but
look instead for the option titled “Open Git Bash here”. On
macOS, you need to first activate this option. Simply google
for “open terminal at folder macOS” and follow the instructions.
It is also possible to drag and drop a folder into a terminal
which will then open the correct path in the terminal. Another
option, of course, is to simply open a terminal and navigate to
the correct folder using cd (change directory, this should work
the same on Windows, macOS and Linux):

cd /home/user/housing/

Make sure that you are in the right folder by listing the contents
of the folder:

72

https://is.gd/7PhUjd
https://is.gd/qCJEbi

4.2. Git superbasics

ls

From now on, make sure to type the commands you see in the
terminal (on Linux and macOS) or in the Git Bash terminal
on Windows. To distinguish the terminal from the R command
line prompt, the prompt of a terminal (or Git Bash terminal
on Windows) will start with owner@localhost. owner is the
username of the project manager in our examples from now
on, and the computer owner used by this project manager is
called localhost (this prompt can look different on your ma-
chine, sometimes the full path to the current working directory
is listed instead). So here is what happens when owner runs ls
on the root directory of the project:

owner@localhost $ ls
analysis.R save_data.R

(On Linux you could also try ll which is often available. It is
an alias for ls -l which provides a more detailed view. There’s
also ls -la which also lists hidden files.)

Make sure that you see the two scripts being listed when running
ls. If not, this means that you are in the wrong directory, so
make sure that you open the terminal in the correct folder.

It’s now time to start tracking these files using Git. In the
same terminal in which we ran ls, run now the following git
command:

owner@localhost $ git init

73

4. Version control with Git

hint: Using 'master' as the name for the initial
branch.↪

hint: This default branch name is subject to
change.↪

hint: To configure the initial branch name to
use in all of your↪

hint: new repositories, which will suppress this
warning, call:↪

hint:
hint: git config --global init.defaultBranch

<name>↪

hint:
hint: Names commonly chosen instead of 'master'

are 'main',↪

hint: 'trunk' and 'development'. The
just-created branch can be↪

hint: renamed via this command:
hint:
hint: git branch -m <name>
Initialized empty Git repository in

/home/user/housing/.git/↪

Take some time to read the hints. Many git commands give you
hints and it’s always a good idea to read them. This hint here
tells us that the default branch name is “master” and that this is
subject to change. Think of a branch as a version of your code.
The “master” branch will hold the default version of your code.
But you could create a branch called “dev” that would contain
a version of the code with features that are still in development.
There is nothing special about the default, “master” branch,
and it could have been called anything else. For example, if you
create a repository on Github first, instead of creating it on your
computer, the default branch will be called “main”. You need to

74

4.2. Git superbasics

pay attention to this, because when we will start interacting with
our Github repository, we need to make sure that we have the
right branch name in mind. Also, note that because the “master”
branch is the most important branch, it gets sometimes referred
to as the “trunk”. Some teams that use trunk-based development
(which I will discuss in the next chapter) even name this branch
“trunk”.

Let’s now run this other git command:

owner@localhost $ git status

On branch master

No commits yet

Untracked files:
(use "git add <file>..." to include in what

will be committed)↪

analysis.R
save_data.R

nothing added to commit but untracked files
present (use "git add" to track)↪

Git tells us quite clearly that it sees two files, but that they’re
currently not being tracked. So if we would modify them, Git
would not keep track of the changes. So it’s a good idea to just
do what Git tells us to do: let’s add them so that Git can track
them:

owner@localhost $ git add

75

4. Version control with Git

Nothing specified, nothing added.
hint: Maybe you wanted to say 'git add .'?
hint: Turn this message off by running
hint: "git config advice.addEmptyPathspec false"

Shoot, simply running git add does not do us any good. We
need to specify which files we want to add. We can name them
one by one, for example git add file1.R file2.txt, but if
we simply want to track all the files in the folder, we can simply
use the . placeholder:

owner@localhost $ git add .

No message this time… is that a good thing? Let’s run git
status and see what’s going on:

owner@localhost $ git status

On branch master

No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: analysis.R
new file: save_data.R

Nice! Our two files are being tracked now, so we can commit the
changes. Committing means that we are happy with our work,
and we can snapshot it. These snapshots then get uploaded to
Github by pushing them. This way, the changes will be available
for our coworkers for them to pull. I’ll explain what this means

76

4.2. Git superbasics

later, so don’t worry if this is confusing, it won’t be by the end
of the chapter. Also, you should know that there is a special file,
called .gitignore, that allows you to list files or folders that
you want Git to ignore. This can be useful in cases where you
are working with sensitive data and don’t want it to be uploaded
to Github. We will not use the .gitignore file just yet, but will
do so in part two of the book. So for now, just remember that
this is an option.

We are now ready to commit our files. Each commit must have
a commit message, and we can write this message as an option
to the git commit command:

owner@localhost $ git commit -m "Project start"

The -m option is there to specify the message for the commit.
Before pushing the commit, let’s run git status again:

owner@localhost $ git status

On branch master
nothing to commit, working tree clean

This means that every change is accounted for in a commit. So
if we were to push now, we could then set our computer on fire:
every change would be safely backed up on Github.com. We can
also choose to not push yet, and keep working and committing.
For example, we could commit 5 times and just push once: all
of the 5 commits would be pushed to Github.com.

Let’s do just that by changing one file. Open analysis.R in
any editor and simply change the start of the script by adding
one line. So go from:

77

4. Version control with Git

library(dplyr)
library(ggplot2)
library(purrr)
library(tidyr)

To:

This script analyses housing data for
Luxembourg↪

library(dplyr)
library(ggplot2)
library(purrr)
library(tidyr)

and now run git status again:

owner@localhost $ git status

On branch master
Changes not staged for commit:

(use "git add <file>..." to update what will
be committed)↪

(use "git restore <file>..." to discard
changes in working directory)↪

modified: analysis.R

no changes added to commit (use "git add" and/or
"git commit -a")↪

Because the file is being tracked, Git can now tell us that some-
thing changed and that we did not commit this change. So if

78

4.2. Git superbasics

our computer would self-combust, these changes would get lost
forever. Better commit them and push them to Github.com as
soon as possible!

Remember, first, we need to add these changes to a commit
using git add .:

owner@localhost $ git add .

(You can run git status at this point to check if the file was
correctly added to be committed.)

Then, we need to commit the changes and add a nice commit
message:

owner@localhost $ git commit -m "Added a comment
to analysis.R"↪

Try to keep commit messages as short and as explicit as possible.
This is not always easy, but it really pays off to strive for short,
clear messages. Also, ideally, you would want to keep commits as
small as possible, ideally one commit per change. For example,
if you’re adding and amending comments in scripts, once you’re
done with that make this a commit. Then, maybe clean up some
code. That’s another, separate commit. This makes rolling back
changes or reviewing them much easier. This will be crucial later
on when we will use trunk-based development to collaborate
with our teammates on a project. It is generally not a good idea
to code all day and then only push one single big fat commit at
the end of the day, but that is what happens very often…

By the way, even if our changes are still not on Github.com, we
can still roll back to previous commits. For example, suppose
that I delete the file accidentally by running rm analysis.R:

79

4. Version control with Git

owner@localhost $ rm analysis.R

Let’s run git status and look for the changes (it’s a line start-
ing with the word deleted):

On branch master
Changes not staged for commit:

(use "git add/rm <file>..." to update what
will be committed)↪

(use "git restore <file>..." to discard
changes in working directory)↪

deleted: analysis.R

no changes added to commit (use "git add" and/or
"git commit -a")↪

Yep, analysis.R is gone. And deleting on the console usually
means that the file is gone forever. Well technically no, there are
still ways to recover deleted files using certain tools, but since
we were using Git we can use it to recover the files! Because we
did not commit the deletion of the file, we can simple tell Git to
ignore our changes. A simple way to achieve this is to stash the
changes, and then drop (or delete) the stash:

owner@localhost $ git stash

Saved working directory and index state WIP on
master: \↪

ab43b4b Added a comment to analysis.R

So the deletion was stashed away, (so in case we want it back
we could get it back with git stash pop) and our project was

80

4.2. Git superbasics

rolled back to the previous commit. Simply take a look at the
files:

owner@localhost $ ls

analysis.R save_data.R

There it is! You can get rid of the stash with git stash drop.
But what if we had deleted the file and committed the change?
In this scenario, we could not use git stash, but we would need
to revert to a commit. Let’s try, first let me remove the file:

owner@localhost $ rm analysis.R

and check the status with git status:

On branch master
Changes not staged for commit:

(use "git add/rm <file>..." to update what
will be committed)↪

(use "git restore <file>..." to discard
changes in working directory)↪

deleted: analysis.R

no changes added to commit (use "git add" and/or
"git commit -a")↪

Let’s add these changes and commit them:

owner@localhost $ git add .

81

4. Version control with Git

owner@localhost $ git commit -m "Removed
analysis.R"↪

[master 8e51867] Removed analysis.R
1 file changed, 131 deletions(-)
delete mode 100644 analysis.R

What’s the status now?

owner@localhost $ git status

On branch master
nothing to commit, working tree clean

Now, we’ve done it! git stash won’t be of any help now. So
how to recover our file? For this, we need to know to which
commit we want to roll back. Each commit not only has a
message, but also an unique identifier that you can access with
git log:

owner@localhost $ git log

commit 8e51867dc5ae89e5f2ab2798be8920e703f73455
(HEAD -> master)↪

Author: User <owner@mailbox.com>
Date: Sun Feb 5 17:54:30 2023 +0100

Removed analysis.R

commit ab43b4b1069cd987685253632827f19d7a402b27

82

4.2. Git superbasics

Author: User <owner@mailbox.com>
Date: Sun Feb 5 17:41:52 2023 +0100

Added a comment to analysis.R

commit df2beecba0101304f1b56e300a3cd713ce7366e5
Author: User <owner@mailbox.com>
Date: Sun Feb 5 17:32:26 2023 +0100

Project start

The first one from the top is the last commit we’ve made. We
would like to go back to the one with the message “Added a
comment to analysis.R”. See the very long string of characters
after “commit”? That’s the commit’s unique identifier, called
hash. You need to copy it (or only like the first 10 or so char-
acters, that’s enough as well). By the way, depending on your
terminal and operating system, git log may open less to view
the log. less is a program that makes it easy to view long doc-
uments. Quit it by simply pressing q on your keyboard. We
are now ready to revert to the right commit with the following
command:

owner@localhost $ git revert
ab43b4b1069cd98768..HEAD↪

and we’re done! Check that all is right by running ls to see that
the file magically returned, and git log to read the log of what
happened:

owner@localhost $ git log

83

4. Version control with Git

commit b7f82ee119df52550e9ca1a8da2d81281e6aac58
(HEAD -> master)↪

Author: User <owner@mailbox.com>
Date: Sun Feb 5 18:03:37 2023 +0100

Revert "Removed analysis.R"

This reverts commit
8e51867dc5ae89e5f2ab2798be8920e703f73455.↪

commit 8e51867dc5ae89e5f2ab2798be8920e703f73455
(HEAD -> master)↪

Author: User <owner@mailbox.com>
Date: Sun Feb 5 17:54:30 2023 +0100

Removed analysis.R

commit ab43b4b1069cd987685253632827f19d7a402b27
Author: User <owner@mailbox.com>
Date: Sun Feb 5 17:41:52 2023 +0100

Added a comment to analysis.R

commit df2beecba0101304f1b56e300a3cd713ce7366e5
Author: User <owner@mailbox.com>
Date: Sun Feb 5 17:32:26 2023 +0100

Project start

Using a range of commits in git revert reverts all the com-
mits from the starting commit (not included) to the last com-
mit. In this example, because only the commit starting with
8e51867dc5 was included in that range, only this commit was

84

4.3. Git and Github

reverted. You could have achieved the same result with git
revert 8e51867dc5.

This small example illustrates how useful Git is, even without us-
ing Github, and even if working alone on a project. At the very
least it offers you a way to simply walk back changes and gives
you a nice timeline of your project. Maybe this does not impress
you much, because we live in a world where cloud services like
Dropbox made things like this very accessible. But where Git
(with the help of a service like Github) really shines is when col-
laboration is needed. Git and code hosting services like Github
make it possible to collaborate at very large scale: thousands
of developers contribute to the Linux kernel, arguably the most
successful open-source project ever, powering most of today’s
smartphones, servers, supercomputers and embedded comput-
ers,3 and you can use these tools to collaborate at a smaller
scale very efficiently as well.

4.3. Git and Github

So we got some work done on our machine and made some
commits. We are now ready to push these commits to Github.
“Pushing” means essentially uploading these changes to Github.
This makes them available to your coworkers if you’re pushing
to a private repository, or makes them available to the world if
you’re pushing to a public repository.

Before pushing anything to Github though, we need to create
a new repository. This repository will contain the code for our
project, as well as all the changes that Git has been tracking on

3https://www.zdnet.com/article/who-writes-linux-almost-10000-
developers/

85

4. Version control with Git

our machine. So if, for example, a new team member joins, he or
she will be able to clone the repository to his or her computer and
have access to every change, every commit message and every
single bit of history of the project. If it’s a public repository,
anyone will be able to clone the repository and contribute code
to it. We are going to walk you through some examples of how
to collaborate with Git using Github in the remainder of this
chapter.

So, let’s first go back to https://github.com/ and create a new
repository:

Figure 4.2.: Creating a new repository from your dashboard.

86

https://github.com/

4.3. Git and Github

You will then land on this page:

Figure 4.3.: Name your repository and choose whether it’s a pub-
lic or private repository.

Name your repository (1), and choose whether it should be open
to the world or if it should be private and only accessible to your
coworkers (2). We are going to make it a public repository, but

87

4. Version control with Git

you could make it private and follow along, this would change
nothing in what we’re going to learn.

Click on Create repository (3). You then land on this page:

Figure 4.4.: Some instructions to get you started.

88

4.3. Git and Github

We get some instructions on how to actually get started with
our project. The first thing you need to do though is to click on
“SSH”:

Figure 4.5.: Make sure to select ‘SSH’.

This will change the links in the instructions from https to
ssh. I will explain why this is important in a couple of para-
graphs. For now, let’s read the instructions. Since we have
already started working, we need to follow the instructions ti-
tled “…or push an existing repository from the command line”.
Let’s review these commands. This is what Github suggests we
run:

git remote add origin
git@github.com:rap4all/housing.git↪

git branch -M main
git push -u origin main

What’s really important is the first command and last command.
The first command adds a remote (referred to as origin) that
points to our repository. If you’re following along, you should
copy the link from your repository here. It would look exactly
the same, but the user name rap4all would be replaced by your
Github username. So now, every time I push, my changes will

89

4. Version control with Git

get uploaded to Github. The second line renames the branch
from “master” to “main”. You are of course free to do so. I
don’t like changing the defaults from Git, so I will keep using
the name “master”. The last command pushes our changes to the
“main” branch (but we need to change “main” to “master”).

Let’s do just that:

owner@localhost $ git remote add origin
git@github.com:rap4all/housing.git↪

This produces no output. We’re now ready to push:

owner@localhost $ git push -u origin master

and it fails:

ERROR: Permission to rap4all/housing.git denied
to b-rodrigues.↪

fatal: Could not read from remote repository.

Please make sure you have the correct access
rights↪

and the repository exists.

The reason is quite simple: Github has absolutely no idea who
we are! Remember, if the repository is public, anyone can clone
it. But that doesn’t mean that anyone can simply push code
to the repo! This means that we need a way to tell Github
that we are the owner of the repository. For this, we need a
way to log in securely, and we will do so using a public/private
RSA encryption key pair. The idea is quite simple; we are going
to generate two files on our computer. These two files form a

90

4.3. Git and Github

public/private key pair. We are going to upload the public key to
Github; and every time we want to interact with Github, Github
will check the public key against the private key that we keep
on our machine (never, ever, send the private key to anyone). If
they match, Github knows that we are who we claim to be and
will let us push to the repository. This is why we switched from
https to ssh before. https would allow us to log in by typing
a password each time we push (but actually, not anymore, since
password login was turned off some years ago). It is much easier
to not have to log in manually and let our key pair do the job
for us.

Let’s generate a public/private RSA key pair. Open a termi-
nal on Linux or macOS, or Git Bash on Windows and run the
following command:

owner@localhost $ ssh-keygen

The following lines will appear in your terminal:

Generating public/private rsa key pair.
Enter file in which to save the key

(/home/user/.ssh/id_rsa):↪

Simply leave this empty and press enter. This next message now
appears:

Enter passphrase (empty for no passphrase):

Leave it empty as well. Entering a passphrase is not really
needed, since the ssh key pair itself will deal with the login. In
some situations, a passphrase might be useful if you’re worried
that someone might get physical access to your machine and

91

4. Version control with Git

push code by impersonating you. But if you work with such
sensitive data and code that this is a real worry, maybe don’t
use Github?

So once you pressed enter, you get asked to confirm the
passphrase:

Enter same passphrase again:

Here again, simply leave it empty and press enter on your key-
board. Once this is done, you should see this:

Your identification has been saved in
/home/user/.ssh/id_rsa↪

Your public key has been saved in
/home/user/.ssh/id_rsa.pub↪

The key fingerprint is:
SHA256:tPZnR7qdN06mV53Mc36F3mASIyD55ktQJFBAVqJXNQw

owner@localhost↪

The key's randomart image is:
+---[RSA 3072]----+
| .*=E*=. |
| o o.oo.. . |
| . . o. o o |
| . ..o. . o |
| +S o.+.|
| .o. o.o*|
| . o. + +=*|
| . o ++*=|
| ..=oo|
+----[SHA256]-----+

If now you go to the specified path on the first line (so in our
case /home/user/.ssh/ you should see two files, id_rsa and

92

4.3. Git and Github

id_rsa.pub, the private and public keys respectively. We’re
almost done: what you need to do now is copy the contents of
the id_rsa.pub file to Github.

Go to your profile settings:

Figure 4.6.: Click on your user profile’s image in the top-right
corner.

And then click on “SSH and GPG keys”:

93

4. Version control with Git

Figure 4.7.: Go to your user settings and choose ‘SSH and GPG
keys’.

and then click on “New SSH key”. Name this key (it’s a
good idea to write something that makes recognizing the
computer that generated the key easy) and paste the contents
of id_rsa.pub in the text box and click on “add SSH key”:

Figure 4.8.: Copy the contents of the public key here.

We can now go back to our terminal and try to push again:

94

4.3. Git and Github

owner@localhost $ git push -u origin master

The following message gets printed:

The authenticity of host 'github.com
(140.82.121.3)' can't be established.↪

ED25519 key fingerprint is
SHA256:+DiY3wvvV6TuJJhbpZisF/
zLDA0zPMSvHdkr4UvCOqU.

↪

↪

This key is not known by any other names
Are you sure you want to continue connecting

(yes/no/[fingerprint])?↪

Type yes and then you should see the following:

Enumerating objects: 10, done.
Counting objects: 100% (10/10), done.
Delta compression using up to 4 threads
Compressing objects: 100% (9/9), done.
Writing objects: 100% (10/10), 2.77 KiB | 2.77

MiB/s, done.↪

Total 10 (delta 2), reused 0 (delta 0),
pack-reused 0↪

remote: Resolving deltas: 100% (2/2), done.
To github.com:rap4all/housing.git
* [new branch] master -> master

Branch 'master' set up to track remote branch
'master' from 'origin'.↪

And we’re done! Our commits are now safely backed up on
Github. If we go to our repository’s main page, we should see
the following:

95

4. Version control with Git

Figure 4.9.: Finally!

96

4.4. Getting to know Github

4.4. Getting to know Github

We have succeeded in installing Git and making it work with our
Github account. If you use another machine for development,
you will need to generate another RSA key pair on that machine
and add the public key to Github. If you use another code host-
ing platform, you can use the same RSA key pair, but will need
to add the public key to this other code hosting platform. You
can even use the same key pair as a passwordless authentication
method for ssh (for example to log into a server, but this is out-
side the scope of this book). Before continuing we are going to
take a little tour of Github.

Figure 4.10.: You repository’s landing page.

97

4. Version control with Git

Once you’re on your repository’s landing page you see the same
files and folders as in the root directory of the project on your
computer. In our case here, we see our two files. Github suggests
that we add a README file; we are going to ignore this for now.
Take a closer look at the menu at the top, below your repository’s
name:

Figure 4.11.: Several options to choose from.

Most important for our needs is the “Issues”, “Pull requests”,
“Actions” and “Settings” tab.

In the next chapter we are going to learn about pull requests
which are essential for collaborating using Git and Github.com.
We will learn about the “Actions” tab in the second part of the
book.

So let’s start with “Settings”.

Figure 4.12.: Choose the ‘Settings’ tab.

98

4.4. Getting to know Github

There are many options that you can choose from, but what’s
important for our purposes is the “Collaborators” option. This
is where you can invite people to contribute to the repository.
People that are invited in this way can directly push to the
repository. Let’s invite the author of this book:

Figure 4.13.: Follow along to add a collaborator.

Start by typing the person’s Github username. You can also
invite collaborators by providing their email addresses.

Figure 4.14.: Look for your collaborators.

99

4. Version control with Git

Then click on the user’s profile and he or she should get an
invitation by email.

This is what it looks like from the perspective of Bruno’s account
now:

Figure 4.15.: Bruno can now push as if he owned the repository.

It’s important to understand the distinction between inviting
someone to contribute to the repository and have someone from
outside the project contribute. We are going to explore these
two scenarios in the next section, but before that, let’s see what
the “Issues” tab is about.

If the repository is public, anyone can open an issue to either
submit a bug, or suggest some ideas, and if the repository is
private, only invited collaborators can do this.

100

4.4. Getting to know Github

Let’s open an issue to illustrate how this works:

Figure 4.16.: Click on ‘New issue’ in the ‘Issues’ tab of your
project.

You will land on this interface:

Figure 4.17.: Write what the issue’s about here.

101

4. Version control with Git

Give a nice title to the issue (1), add a thorough description
(2), (optionally) assign it to someone (3) and (optionally) add a
label to it (4), finally click on “Submit new issue” (5) to submit
the issue:

Figure 4.18.: Try to provide as many details as possible.

Sometimes issues don’t need to be very long, and act more as
reminders than anything else. For example here, the owner
of the repository didn’t have the time to add a Readme, but
didn’t want to forget to add one later on. The author assigned
the issue to Bruno: so it’ll be Bruno’s job to add the Readme.
Issue-driven project management is a very valid strategy when
working asynchronously and in a decentralized fashion.

If you encountered a bug and want to open an issue, it is very
important that you provide a minimal, reproducible example
(MRE). MREs are snippets of code that can be run very easily by
someone other than yourself and which produce the bug reliably.
Interestingly, if you understand what makes an MRE minimal

102

4.4. Getting to know Github

and reproducible, you understand what will make our pipelines
reproducible as well. So what’s important for an MRE?

First, the code needs to be self-contained. For example, if some
data is required you need to provide the data. If the data is
sensitive, you need to think about the bug in greater detail: is
the bug due to the structure of the data, or does the bug manifest
itself on any kind of data? If that’s the case, use some of the
built-in datasets to R (iris, mtcars, etc) for your MRE.

Does your MRE require extra packages to run? Then make this
as clear as possible, and not only provide the package names,
but also their versions (it is a good idea to copy and paste the
output of sessionInfo() at the end of the issue).

Finally, does your example depend on some object defined in
the global state? If yes, you also need to provide the code to
create this object.

The bar you need to set for an MRE is as follows: bar needed
package dependencies that may need to be installed beforehand,
people that try to help you should be able to run your script by
simply copy-and-pasting it into an R console. Any other manip-
ulation that you require from them is unacceptable: remember
that in open source development, developers very often work
during their free time, and don’t owe you tech support! And
even if they did, it is always a good idea to make it as easy as
possible for them to help you, because it simply increases the
likelihood that they will actually help.

Also, writing an MRE can usually make you actually debug the
code yourself. Just like in rubber duck debugging4, the fact of
simply trying to explain the problem can lead to finding what’s

4https://en.wikipedia.org/wiki/Rubber_duck_debugging

103

https://en.wikipedia.org/wiki/Rubber_duck_debugging

4. Version control with Git

wrong. But by writing an MRE, you’re also reducing the prob-
lem into its most basic parts, and removing everything unneces-
sary. By doing so, you might realize that what you thought was
a bug of the library was maybe rather a problem between the
keyboard and the chair.

So don’t underestimate the usefulness of creating high-quality
MREs for your issues! One package that can assist you with
this is {reprex} (read about it here5).

4.5. Conclusion

You should now have your first repository and know the very
basics of using Git and Github.com. If you did not understand
everything, take some time to rerun the commands from above.
Maybe add some more files to your repo, remove them, try to
revert certain commits, etc. Create a new repo and try to push
some files or scripts to it. Really take the time to understand
what is going on and how to use these tools, because they are
essential for reproducibility.

5https://reprex.tidyverse.org/

104

https://reprex.tidyverse.org/

5. Collaborating using
Trunk-based
development

As already mentioned several times, there are two ways of col-
laborating with Git (and Github): either as a team, or as an
external dev (external, as in, not part of the development team
of a given project). External contributors can only contribute
code to public repositories, and the project owners can either
accept or refuse the patches.

We are going to learn about these two ways of collaborating.
Let’s first focus on collaboration within a team.

5.1. Collaborating as a team

5.1.1. TBD basics

Remember the issue we opened and assigned to Bruno? Bruno
will now take care of this issue by adding a Readme file. This will
also be the opportunity to introduce trunk-based development.
The idea of trunk-based development is simple; team members
should work on separate branches to add features or fix bugs,
and then merge their branch to the “trunk” (in our case the

105

5. Collaborating using Trunk-based development

master branch) to add their changes back to the main codebase.
And this process should happen quickly, ideally every day, or as
soon as some code is ready. When a lot of work accumulates
in a branch for several days or weeks, merging it back to the
master branch can be very painful. So by working in short-lived
branches, if conflicts arise, they can be dealt with quickly. This
also makes code review much easier, because the reviewer only
needs to review little bits of code at a time. If instead long-lived
branches with a lot of code changes get merged, reviewing all
the changes and solving the conflicts that could arise would be a
lot of work. To avoid this, it is best to merge every day or each
time a piece of code is added, and, very importantly, this code
does not break the whole project (we will be using unit tests for
this later).

So in summary: to avoid a lot of pain by merging branches that
moved away too much from the trunk, we will create branches,
add our code, and merge them to the trunk as soon as possible.
As soon as possible can mean several things, but usually this
means as soon as a feature was added, a bug was fixed, or as soon
as we added some code that does not break the whole project, even
if the feature we wanted to add is not done yet. The philosophy
is that if merging fails, it should fail as early as possible. Early
failures are easy to deal with.

Our aim should be to provide a functioning project to anyone
cloning the master branch anytime (but still offer a simple way
to install a point release of the project).

So, back to our issue. First, Bruno needs to clone the reposi-
tory:

bruno@computer $ git clone
git@github.com:rap4all/housing.git↪

106

5.1. Collaborating as a team

To add the feature, Bruno will now create a new branch by using
the git checkout command with the -b flag:

bruno@computer $ git checkout -b "add_readme"

The project automatically switches to the new branch:

Switched to a new branch 'add_readme'

We can also run git status to double-check:

bruno@computer $ git status

On branch add_readme
nothing to commit, working tree clean

Bruno adds a file called README.md and adds the following text
to it:

Housing data for Luxembourg

These scripts for the R programming language
download nominal
housing prices from the *Observatoire de l'Habitat*
and
tidy them up into a flat data frame.

- save_data.R: downloads, cleans, and creates data
frames from the data
- analysis.R: creates plots of the data

Let’s save this and run git status to see what happened:

107

5. Collaborating using Trunk-based development

bruno@computer $ git status

Git tells Bruno that the README.md file is not being tracked:

On branch add_readme
Untracked files:

(use "git add <file>..." to include in what
will be committed)↪

README.md

nothing added to commit but untracked files
present (use "git add" to track)↪

So next Bruno is going to track it and push the changes. Also,
Bruno is going to use a neat trick when pushing: because Bruno
is working on fixing an issue, it would be great if he could close
it as he pushes the fix. This is possible by referencing the issue
number in the commit message:

bruno@computer $ git add .
bruno@computer $ git commit -m "fixed #1"

#1 refers to the number of the issue (it’s the first issue that
was opened in the repository). So by referencing this issue with
its number in the commit message and pushing, the issue gets
automatically closed when Bruno pushes:

bruno@computer $ git push origin add_readme

As you can see from the command above, Bruno pushes to
“add_readme”, the branch he opened to solve the issue, not
“master”. If he tried to push to “master” a message saying that

108

5.1. Collaborating as a team

“master” is up-to-date would get printed. Let’s see the output
of pushing to “add_readme”:

Enumerating objects: 4, done.
Counting objects: 100% (4/4), done.
Delta compression using up to 12 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 501 bytes | 501.00

KiB/s, done.↪

Total 3 (delta 0), reused 0 (delta 0),
pack-reused 0↪

remote:
remote: Create a pull request for 'add_readme'

on GitHub by visiting:↪

remote: https://github.com/rap4all/housing/
pull/new/add_readme↪

remote:
To github.com:rap4all/housing.git
* [new branch] add_readme -> add_readme

Git tells us that Bruno now needs to create a pull request. What
is that? Well, if we want to merge our branch back into the
trunk, we need to do so by using a pull request. Let’s see what
Bruno sees on Github:

109

5. Collaborating using Trunk-based development

Figure 5.1.: Bruno sees that the ‘add_readme’ branch has been
recently updated.

Bruno can now decide to continue working on this branch, or,
since the purpose of this branch was only to add the Readme
file, decide instead to do a pull request.

By clicking on the “Compare & pull request” button Bruno now
sees this:

110

5.1. Collaborating as a team

Figure 5.2.: This screen makes it easy to see what changed.

Bruno can leave a comment, and see what changed (in this case,
a single file was added) and most importantly, add a reviewer if
needed:

111

5. Collaborating using Trunk-based development

Figure 5.3.: Let boss decide if this is good enough.

This is what Bruno sees now:

Figure 5.4.: Github tells us that this branch can safely be
merged.

Bruno requested the review, but Github tells us that the branch
can safely be merged. This is because we added a file and did not
touch anything else, and no one else worked on the project while
Bruno was working. So there are no risks of conflicts arising.

112

5.1. Collaborating as a team

Let’s see what the owner now sees. The project owner should
have gotten a notification to review the pull request:

Figure 5.5.: The owner was notified to review the pull request.

By clicking on the notification, the owner gets taken to this
view:

113

5. Collaborating using Trunk-based development

Figure 5.6.: Time to review the pull request.

Here, the reviewer can check the commit, the files that were
changed, and see if there are any conflicts between this code
and the code base on the master (or trunk) branch. Github also
tells us two interesting things: the owner can add a rule that

114

5.1. Collaborating as a team

states that any pull request must be approved, and also that
continuous integration has not been set up (we are going to see
what this means in the second part of this book).

Let’s go ahead and add a rule forcing each pull request to be
approved. By clicking on “Add rule”, the following screen ap-
pears:

Figure 5.7.: Choose how to protect the master branch.

By clicking the first option, more sub-options appear:

115

5. Collaborating using Trunk-based development

Figure 5.8.: Reviews are now required.

By choosing these options, the owner can basically enforce trunk-
based development (well, collaborators still have to submit pull
requests frequently enough though, because if they don’t, we
can be in a situation where merging can be very difficult).

Let’s choose one last option: by scrolling down, it’s possible to
select the option “Do not allow bypassing the above settings”.
This makes sure that even administrations (the owners of the
project) must abide by the same rules.

Let’s go back to the pull request. We can see now that a review
is required:

116

5.1. Collaborating as a team

Figure 5.9.: Time to review.

So now the owner actually has to go and see the files that were
changed:

117

5. Collaborating using Trunk-based development

Figure 5.10.: Check the code and add comments if needed.

It’s possible to add comments to single lines if needed:

Figure 5.11.: It’s possible to add comments to lines.

By clicking on the plus sign, a box appears and it’s possible to
leave a comment. In this case, everything is fine, so the owner
is going to click on the “Viewed” button:

118

5.1. Collaborating as a team

Figure 5.12.: Good job!

Then, by clicking on “Review changes”, it’s possible to either
add a general comment, approve the pull request, or request
changes that must be addressed before merging. Let’s go ahead
and approve:

Figure 5.13.: Nothing to complain about.

By submitting the review, the reviewer is taken back to the
issue:

119

5. Collaborating using Trunk-based development

Figure 5.14.: We’re done, we can merge the pull request.

The reviewer can now merge the pull request by clicking on the
“Merge pull request” button. Github even suggests we delete
the branch, which has served its purpose:

120

5.1. Collaborating as a team

Figure 5.15.: Let’s get rid of this branch.

Let’s delete it (it’s always possible to restore it).

5.1.2. Handling conflicts

As mentioned in the previous chapter, Git makes it easy to han-
dle conflicts. Well, let’s be clear; even with Git, it can some-
times be very tricky to resolve conflicts. But you should know
that when solving a conflict with Git is difficult, this usually
means that it would be impossible to do any other way, and
would inevitably result in someone having to reconcile the files
by hand. What makes handling conflicts easier with Git though,
is that Git is able to tell you where you can find clashes on a
per-line basis. So for instance, if you change the first ten lines
of a script, and I change the next ten lines, there would be no
conflict, and Git will automatically merge both our contribu-
tions into a single file. Other tools, like Dropbox, would fail in a
situation like this, because these tools can only handle conflicts

121

5. Collaborating using Trunk-based development

on a per-file basis. The same file was changed by two different
persons? Regardless of where these changes happened, you now
have a conflict to deal with on your hands… and worse, you don’t
even know where the conflicts are in the file! You will need to
scan the two resulting copies of the file by hand. Git, in the case
where the same lines were changed, highlights them very clearly
so that you can quickly find them and deal with the problems.

We will see all of this in the coming sections.

So how do conflicts happen? Let’s imagine the following scenario.
Both Bruno and the project owner create branches, and edit the
same file. Perhaps they talked over the phone and decided to
add a feature or correct a bug. Perhaps they decided that it
wasn’t worth opening an issue on Github and assign someone to
do it. After all, they discussed this on the phone and decided
that Bruno should do it. Or was it the owner who needed to
solve the issue? No one remembers now. Either way, they both
did, and changed the same file, so a conflict will ensue.

First, Bruno needs to switch back to the master branch on his
computer:

bruno@computer $ git checkout master

Switched to branch 'master'
Your branch is behind 'origin/master' by 2

commits, and can be fast-forwarded.↪

(use "git pull" to update your local branch)

Git tells us to update the code on our computer by running git
pull. We use git push to upload code to Github, and use git
pull to download code from Github. Let’s run it and see what
happens:

122

5.1. Collaborating as a team

bruno@computer $ git pull

Updating b7f82ee..c774ebf
Fast-forward
README.md | 7 +++++++
1 file changed, 7 insertions(+)
create mode 100644 README.md

Files on Bruno’s computer have been updated. The owner of
the project (called owner, remember?) can do the same and will
see the same. Now, Bruno creates a new branch to work on the
new feature:

bruno@computer $ git checkout -b
add_cool_feature↪

And the project owner also creates a new branch:

owner@localhost $ git checkout -b
add_sweet_feature↪

They now edit the same file, analysis.R. Bruno added this
function:

make_plot <- function(country_level_data,
commune_level_data,
commune){

filtered_data <- commune_level_data %>%
filter(locality == commune)

123

5. Collaborating using Trunk-based development

data_to_plot <- bind_rows(
country_level_data,
filtered_data

)

ggplot(data_to_plot) +
geom_line(aes(y = pl_m2,

x = year,
group = locality,
colour = locality))

}

This way, Bruno could delete the repeating code and create plots
like this:

lux_plot <- make_plot(country_level_data,
commune_level_data,
communes[1])

Esch sur Alzette

esch_plot <- make_plot(country_level_data,
commune_level_data,
communes[2])

and so on...

The end effect is the same, but by using this function, the code
is now shorter, and clearer. Also, if someone wants to change,
say, the theme of the plot, now this only needs to be changed in
one place and not for each commune. Now, what did the owner
change? The owner started by removing the line that loaded

124

5.1. Collaborating as a team

the {purrr} package, as no function from the package was used
in the script, and then also changed every %>% to |>. It seems
that much more than just who would make the changes got lost
in translation… Anyways, both now push their changes to their
respective branches. This is Bruno:

bruno@computer $ git add .
bruno@computer $ git commit -m "make_plot() for

plotting"↪

bruno@computer $ git push origin
add_cool_feature↪

Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 12 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 647 bytes | 647.00

KiB/s, done.↪

Total 3 (delta 1), reused 0 (delta 0),
pack-reused 0↪

remote: Resolving deltas: 100% (1/1), completed
with 1 local object.↪

remote:
remote: Create a pull request for

'add_cool_feature' on GitHub by visiting:↪

remote:
https://github.com/rap4all/housing/pull/
new/add_cool_feature

↪

↪

remote:
To github.com:rap4all/housing.git
* [new branch] add_cool_feature ->

add_cool_feature↪

125

5. Collaborating using Trunk-based development

and this is the owner:

owner@localhost $ git add .
owner@localhost $ git commit -m "cleanup"
owner@localhost $ git push origin

add_sweet_feature↪

Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 4 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 449 bytes | 449.00

KiB/s, done.↪

Total 3 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), completed

with 1 local object.↪

remote:
remote: Create a pull request for

'add_sweet_feature' on GitHub by visiting:↪

remote:
https://github.com/rap4all/housing/pull/
new/add_sweet_feature

↪

↪

remote:
To github.com:rap4all/housing.git
* [new branch] add_sweet_feature ->

add_sweet_feature↪

So, let’s think about what just happened: two developers
changed the same file, analysis.R, in two separate branches.
These two branches need to be merged back to the trunk.

So Bruno does a pull request:

126

5.1. Collaborating as a team

Figure 5.16.: Bruno opens a pull request after finishing his
changes.

First, Bruno selects the feature branch (1), then clicks on “Con-
tribute” (2) and then “Open pull request” (3). Bruno gets taken
to this screen:

Figure 5.17.: No conflicts, for now…

Now Bruno can click on “Create pull request”, but remember,
because reviews are required, automatic merging is disabled.

127

5. Collaborating using Trunk-based development

If now we go see what happens from the project owner’s side
of things, first of all, there’s now a notification for a pending
review:

Figure 5.18.: New review pending.

By clicking on it, the project owner can review the pull request
and decide what to do with it. So at this point, the owner did
not open a pull request for the feature he or she worked on yet.
And maybe that’s a good thing, because now the project owner
can see that the changes that Bruno made on the file will conflict
with the project owner’s changes.

So how to move forward? Simple: the project owner can decide
to approve the pull request, which will merge Bruno’s changes
into the master branch (or the trunk). Then, instead of opening
a pull request for merging his or her changes into trunk, which
will cause a conflict, the project owner can instead merge the
changes from the trunk into his or her feature branch. This will
also create a conflict, but now the project owner can easily deal
with it on his or her machine, and then push a new commit with
both changes integrated gracefully. The image below illustrates
this workflow:

128

5.1. Collaborating as a team

Figure 5.19.: Conflict solving with trunk-based development.

First step, the owner reviews and approves Bruno’s pull re-
quest:

Figure 5.20.: First, let’s approve the changes.

The pull request can get merged and Bruno’s feature branch
deleted. Now, it wouldn’t make sense for the project owner to

129

5. Collaborating using Trunk-based development

create a pull request to merge his or her changes. They would
conflict with what Bruno did. So the project owner goes back
to his or her computer and essentially updates the code in his
or her feature branch by merging master into it.

So, the project owner checks that he or she is working on the
feature branch:

owner@localhost $ git status

On branch add_sweet_feature
nothing to commit, working tree clean

Ok, so now let’s get the updated code from master, by pulling
from master:

owner@localhost $ git pull origin master

The owner now sees this:

remote: Enumerating objects: 6, done.
remote: Counting objects: 100% (6/6), done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 4 (delta 1), reused 3 (delta 1),

pack-reused 0↪

Unpacking objects: 100% (4/4), 1.23 KiB | 418.00
KiB/s, done.↪

From github.com:rap4all/housing
* branch master -> FETCH_HEAD

c774ebf..a43c68f master -> origin/master
Auto-merging analysis.R
CONFLICT (content): Merge conflict in analysis.R

130

5.1. Collaborating as a team

Automatic merge failed; fix conflicts and then
commit the result.↪

Git detects that there are some conflicts and tells the owner to
fix them, and then commit the results. So let’s open analysis.R
and see how it looks (you can view the file online on this link1.
First of all, you will see Git deals with conflicts on a per-line
basis. So each line that the owner changed that does not con-
flict with Bruno’s change gets immediately updated to reflect
the owner’s changes. For example, remember that the owner re-
moved the line that loaded the {purrr} package? This line was
also removed by pulling the changes from master into the feature
branch. Also, you should notice that every %>% was changed into
|> as well. These two changes happened without any issues.

Then, you should understand what happens when a conflict gets
detected on some lines. For example, this is the first conflict you
should see:

<<<<<<< HEAD
filtered_data <- commune_level_data |>

filter(locality == communes[1])
=======

filtered_data <- commune_level_data %>%
filter(locality == commune)

>>>>>>> a43c68f5596563ffca33b3729451bffc762782c3

We see how the lines look on the owner’s computer and how
they look in the master branch (or trunk). The lines between
<<<<<<< HEAD and ======= are the lines in the owner’s
feature branch. The lines between ======= and >>>>>>>
a43c68f5596563ffca33b3729451bffc762782c3 are how they

1https://is.gd/ktWtjr

131

https://gist.github.com/b-rodrigues/f713702268c99328ad16af56f7d32892

5. Collaborating using Trunk-based development

look in the master branch (or trunk). This very long chain of
characters that starts with a43c68f is the hash of the commit
from which these lines come from.

So this makes things quite easy; one simply needs to remove the
outdated code, and then commit and push the fixed file! The
project owner only needs to remove <<<<<<< HEAD and =======
and what’s between these lines, as well as the lines that show the
hash commit. The project owner can now commit and push the
changes, open a pull request, ask Bruno to review the changes
one last time and merge everything back to master.

Figure 5.21.: The conflict has been gracefully solved.

In (1) we see the commit that deals with the conflict, in (2) the

132

5.1. Collaborating as a team

owner asks Bruno for a review and then in (3) we see that Bruno
reviewed and approved. Finally, the pull request can be merged
(4) and the feature branch deleted.

5.1.3. Make sure you blame the right person

If many people contribute to a single project, it might some-
times be difficult to know who changed what and when exactly.
This is where the git blame command is useful. If you want
to know who changed the file called analysis.R for example,
simply run:

owner@localhost $ git blame analysis.R

and you will see a detailed history, line by line, with the user
name of the contributors and a date stamp:

b7f82ee1 (Bruno 2023-02-05 18:03:37 +0100 24)
#Let’s also compute it...↪

b7f82ee1 (Bruno 2023-02-05 18:03:37 +0100 25)
55804ccb (Owner 2023-02-11 22:33:20 +0000 26)

country_level_data <- ...↪

55804ccb (Owner 2023-02-11 22:33:20 +0000 27)
mutate(p0 = ifelse(y...↪

We can see that Bruno edited lines 24 and 25 on the 5th of
February as part of the commit with the hash b7f82ee1, while
the owner of the repository changed lines 26 and 27 on the 11th
of February as part of the commit with the hash 55804ccb.

Take advantage of git blame to have a clear overview of each
file’s changes.

133

5. Collaborating using Trunk-based development

5.1.4. Simplified trunk-based development

The workflow that we showed here may seem a bit too rigid
for smaller teams (below 4 or 5 contributors). It is possible to
adopt a simplified version of trunk-based development, where
contributors don’t have to open pull requests to merge their
feature branches into the trunk, and no reviewer is needed. In
cases like this, Git forces you to pull changes if someone already
merged his or her feature branch into the trunk before you could.
This way, when pulling, conflicts (if any) arise at that point. It
is then your responsibility to solve the conflicts (and this works
just like in the previous section) and then commit and push
the commits with the conflicts resolved. Another contributor
who then wishes to merge his or her feature branch into the
trunk will have to pull again, ensuring that conflicts get resolved
before they can merge. If no conflicts arise (for example, you
both worked on different files, or on different lines of the same
files), then no resolution is needed and the feature branch can
be merged into master.

5.1.5. Conclusion

The main ideas of trunk-based development are:

• Each contributor opens a new branch to develop a feature
or fix a bug, and works alone on his or her own little
branch;

• At the end of the day at the latest (or a previously agreed
upon duration), branches need all to get merged;

• Conflicts need to be taken care of at that point;
• If adding a feature would take more time than just one

day, then the task needs to be split in a manner that

134

5.2. Contributing to public repositories

small contributions can be merged daily. In the begin-
ning, these contributions can be simple placeholders that
will be gradually enriched with functioning code until the
feature is successfully implemented. This strategy is called
branching by abstraction;

• The master branch (or trunk) always contains working,
production-grade, code;

• To enforce discipline, it might be worth it to make opening
pull requests mandatory for merging back to the trunk,
and require a review.

5.2. Contributing to public repositories

In this last section, we are going to briefly discuss how to con-
tribute to a project when we are not a team member of that
project. For example, maybe we use an R package and notice a
bug, and want to propose a fix. Or maybe we simply spotted a
typo in the README of said package, and want to propose a
correction. Whatever it may be, if the repository is public, any-
one can propose a fix. For example, consider this repository:

Figure 5.22.: A public repository.

135

5. Collaborating using Trunk-based development

This repository contains code written by a fellow called “rap4all”,
and Bruno uses this code daily. However, Bruno notices a typo
in the readme, and wants to propose a fix.

First, Bruno visits the repository on Github (since it’s a public
repository, anyone can view it online) and creates a fork:

Figure 5.23.: Bruno needs to create a fork of the repository.

Forking creates a copy of the repository in Bruno’s account:

Figure 5.24.: Bruno goes ahead with forking.

136

5.2. Contributing to public repositories

Bruno now sees the fork on his account as well:

Figure 5.25.: Bruno’s fork.

So now, Bruno can clone this repository and work on it, because
he is working on a copy of the repository that he owns. Anything
Bruno does on this copy will not affect the original repository:

bruno@computer $ git clone
git@github.com:b-rodrigues/my_cool_project.git↪

↪

Bruno now fixes the typo in the README.md file, commits and
pushes to his fork:

137

5. Collaborating using Trunk-based development

Figure 5.26.: Bruno fixed the typo in his fork.

As you can see, Bruno’s fork is now ahead of the original repo
by one commit. By clicking on “Contribute”, Bruno can open a
pull request to propose his fix to the original repository.

This pull request will be opened over at the original repository:

138

5.2. Contributing to public repositories

Figure 5.27.: Bruno opens a pull request to contribute his fix
upstream.

What does the owner of the original repository, “rap4all”, see?
The pull request Bruno opened is now in the original repository’s
“Pull request” menu, and the owner can check what the contri-
bution is, if it breaks code or not, etc. This is essentially the
same workflow as the one presented before in trunk-based devel-
opment with pull requests and reviews before merging (minus
the forking of the repository).

139

5. Collaborating using Trunk-based development

Figure 5.28.: The owner of the original repository can now ac-
cept Bruno’s fix.

By merging the fix, the owner can now benefit from a grammat-
ically correct Readme file as well:

140

5.3. Further reading

Figure 5.29.: The beauty of open source.

5.3. Further reading

To know everything about trunk-based development, check out
Hammant (2020). A free, online, version of the book is available
at https://trunkbaseddevelopment.com/.

141

https://trunkbaseddevelopment.com/

6. Functional programming

Now that we are familiar with Git and Github, we can start
with writing code. We will learn how to write code using the
functional programming paradigm. Programming paradigms
are ways to structure programs (or scripts).

This chapter will teach you the fundamentals of functional pro-
gramming. Functional programming might sound scary, but we
will focus on only a handful of concepts that are quite accessible
but still provide many benefits. Using these functional program-
ming concepts will make your code more reliable, easier to test,
document, share, and ultimately rerun.

6.1. Introduction

Remember that the philosophy of part one of this book is “don’t
repeat yourself”. In this chapter we will see how we can reduce
the amount of code as much as possible. In the previous chapter
we’ve seen how Bruno was able to get rid of many lines of code
(that were all the same) by writing a single function:

make_plot <- function(country_level_data,
commune_level_data,
commune){

143

6. Functional programming

filtered_data <- commune_level_data %>%
filter(locality == commune)

data_to_plot <- bind_rows(
country_level_data,
filtered_data

)

ggplot(data_to_plot) +
geom_line(aes(y = pl_m2,

x = year,
group = locality,
colour = locality))

}

Now we are going to go one step further and not only learn how
to write good functions, but also how we can push the concept
of “not repeating oneself” to the extreme by using higher-order
functions and function factories.

You are very likely already familiar with at least two elements
of functional programming: functions and lists. But functional
programming is a complete programming paradigm, so using
functional programming is more than simply using functions and
lists (which you can use with other programming paradigms as
well).

Functional programming is a paradigm that relies exclusively
on the evaluation of functions to achieve the desired result. If
you have already written your own functions in the past, what
follows will not be very new. But in order to write a good func-
tional program, the functions that you write and evaluate have
to have certain properties. Before discussing these properties,

144

6.1. Introduction

let’s start with state.

6.1.1. The state of your program

Let’s suppose that you start a fresh R session, and immediately
run this line:

ls()

If you did not modify any of R’s configuration files that get
automatically loaded on startup, you should see the following:

character(0)

Let’s suppose that now you load some data:

data(mtcars)

and define a variable a:

a <- 1

Running ls() now shows the following:

[1] "a" "mtcars"

You have just altered the state of your program. You can think
of the state as a box that holds everything that gets defined by
the user and is accessible at any time. Let’s now define a simple
function that prints a sentence:

145

6. Functional programming

f <- function(name){
print(paste0(name, " likes lasagna"))

}

f("Bruno")

and here’s the output:

[1] "Bruno likes lasagna"

Let’s run ls() again:

[1] "a" "f" "mtcars"

Function f() is now listed there as well. This function has two
nice properties:

• For a given input, it always returns exactly the same
output. So f("Bruno") will always return “Bruno likes
lasagna”.

• When running this function, the state of the program does
not get altered in any way.

6.1.2. Predictable functions

Let’s now define another function called g(), which does not
have the same properties as f(). First, let’s define a function
which does not always return the same output given a particular
input:

146

6.1. Introduction

g <- function(name){
food <- sample(c("lasagna", "cassoulet",
"feijoada"), 1)↪

print(paste0(name, " likes ", food))
}

For the same input, “Bruno”, this function now produces (po-
tentially) a different output:

g("Bruno")
[1] "Bruno likes lasagna"

g("Bruno")
[1] "Bruno likes feijoada"

And now let’s consider function h() that modifies the state of
the program:

h <- function(name){
food <- sample(c("lasagna", "cassoulet",
"feijoada"), 1)↪

if(exists("food_list")){
food_list <<- append(food_list, food)

} else {
food_list <<- append(list(), food)

}

print(paste0(name, " likes ", food))
}

This function uses the <<- operator. This operator saves def-

147

6. Functional programming

initions that are made inside the body of functions (the body
of a function are all the instructions that go between the curly
braces) in the global environment. Before calling this function,
run ls() again. You should see the same objects as before, plus
the new functions we’ve defined:

[1] "a" "f" "g" "h"
"mtcars"↪

Let’s now run h() once:

h("Bruno")
[1] "Bruno likes feijoada"

And now ls() again:

[1] "a" "f" "food_list" "g"
"h" "mtcars"↪

Running h() did two things: it printed the message, but also
created a variable called “food_list” in the global environment
with the following contents:

food_list

[[1]]
[1] "feijoada"

Let’s run h() again:

148

6.1. Introduction

h("Bruno")
[1] "Bruno likes cassoulet"

and let’s check the contents of “food_list”:

food_list

[[1]]
[1] "feijoada"

[[2]]
[1] "cassoulet"

If you keep running h(), this list will continue growing. Let
me say that I hesitated to show you this; this is because if you
didn’t know <<-, you might find the example above useful. But
while useful, it is quite dangerous as well. Generally, we want to
avoid using functions that change the state as much as possible
because these functions are unpredictable, especially if random-
ness is involved. It is much safer to define h() like this instead:

h <- function(name, food_list = list()){

food <- sample(c("lasagna", "cassoulet",
"feijoada"), 1)↪

food_list <- append(food_list, food)

print(paste0(name, " likes ", food))

food_list

149

6. Functional programming

}

The difference now is that we made food_list the second argu-
ment of the function. Also, we defined it as being optional by
writing:

food_list = list()

This means that if we omit this argument, the empty list will get
used by default. This avoids the users from having to manually
specify it.

We can call it like this:

food_list <- h("Bruno", food_list)
since food_list is
already defined, we don't
need to start with an empty list

[1] "Bruno likes feijoada"

We save the output back to food_list. Let’s now check its
contents:

food_list

[[1]]
[1] "feijoada"

[[2]]
[1] "cassoulet"

150

6.1. Introduction

[[3]]
[1] "feijoada"

The only thing that we now still need to deal with is the fact
that the food item gets chosen randomly. I’m going to show you
the simple way of dealing with this, but later in this chapter
we are going to use the {withr} package for situations like this.
Let’s redefine h() one last time:

h <- function(name, food_list = list(), seed =
123){↪

We set the seed, making sure that we get
the same selection of food for a given seed

set.seed(seed)
food <- sample(c("lasagna", "cassoulet",
"feijoada"), 1)↪

We now need to unset the seed, because
if we don't, guess what, the seed will
stay set for the whole session!

set.seed(NULL)

food_list <- append(food_list, food)

print(paste0(name, " likes ", food))

food_list
}

151

6. Functional programming

Let’s now call h() several times with its default arguments:

h("Bruno")

[1] "Bruno likes feijoada"
[[1]]
[1] "feijoada"

h("Bruno")

[1] "Bruno likes feijoada"
[[1]]
[1] "feijoada"

h("Bruno")

[1] "Bruno likes feijoada"
[[1]]
[1] "feijoada"

As you can see, every time this function runs, it now outputs
the same result. Users can change the seed to have this function
output, consistently, another result.

6.1.3. Referentially transparent and pure
functions

A referentially transparent function is a function that does not
use any variable that is not also one of its inputs. For example,

152

6.1. Introduction

the following function:

bad <- function(x){
x + y

}

is not referentially transparent, because y is not one of the func-
tion’s inputs. What happens if you run bad() is that bad()
needs to look for y. Because y is not one of its inputs, bad()
then looks for it in the global environment. If y is defined there,
it then gets used. Defining and using such functions must be
avoided at all costs because these functions are unpredictable.
For example:

y <- 10

bad <- function(x){
x + y

}

bad(5)

This will return 15. But if y <- 45 then bad(5) would this
time around return 50. It is much safer, and clearer to make y
an explicit input of the function instead of having to keep track
of y’s value (and it’s so easy to do, why just not do it):

good <- function(x, y){
x + y

}

good() is a referentially transparent function; it is much safer
than bad(). good() is also a pure function, because it’s a func-

153

6. Functional programming

tion that does not interact in any way with the global environ-
ment. It does not write anything to the global environment, nor
requires anything from the global environment. Function h()
from the previous section was not pure, because it created an
object and wrote it to the global environment (the food_list
object). Turns out that pure functions are thus necessarily ref-
erentially transparent.

So the first lesson in your functional programming journey that
you have to remember is to only use pure functions.

6.2. Writing good functions

6.2.1. Functions are first-class objects

In a functional programming language, functions are first-class
objects. Contrary to what the name implies, this means that
functions, especially the ones you define yourself, are nothing
special. A function is an object like any other, and can thus
be manipulated as such. Think of anything that you can do
with any object in R, and you can do the same thing with a
function. For example, let’s consider the +() function. It takes
two numeric objects and returns their sum:

1 + 5.3

[1] 6.3

or alternatively: `+`(1, 5.3)

154

6.2. Writing good functions

You can replace the numbers with functions that return num-
bers:

sqrt(1) + log(5.3)

[1] 2.667707

It’s also possible to define a function that explicitly takes another
function as an input:

h <- function(number, f){
f(number)

}

You can call then use h() as a wrapper for f():

h(4, sqrt)

[1] 2

h(10, log10)

[1] 1

Because h() takes another function as an argument, h() is called
a higher-order function.

If you don’t know how many arguments f(), the function you’re
wrapping, has, you can use the ...:

h <- function(number, f, ...){
f(number, ...)

}

155

6. Functional programming

... are simply a place-holder for any potential additional argu-
ment that f() might have:

h(c(1, 2, NA, 3), mean, na.rm = TRUE)

[1] 2

h(c(1, 2, NA, 3), mean, na.rm = FALSE)

[1] NA

na.rm is an argument of mean(). As the developer of h(), I
don’t necessarily know what f() might be, but even if I knew
what f() would be and knew all its arguments, I might not want
to list them all. So I can use ... instead. The following is also
possible:

w <- function(...){
paste0("First argument: ", ..1,

", second argument: ", ..2,
", last argument: ", ..3)

}

w(1, 2, 3)

[1] "First argument: 1, second argument: 2, last
argument: 3"

If you want to learn more about ..., type ?dots in an R con-
sole.

Because functions are nothing special, you can also write func-
tions that return functions. As an illustration, we’ll be writing

156

6.2. Writing good functions

a function that converts warnings to errors. This can be quite
useful if you want your functions to fail early, which often makes
debugging easier. For example, try running this:

sqrt(-5)

Warning in sqrt(-5): NaNs produced

[1] NaN

This only raises a warning and returns NaN (Not a Number).
This can be quite dangerous, especially when working non-
interactively, which is what we will be doing a lot later on. It
is much better if a pipeline fails early due to an error, than
dragging a NaN value. This also happens with log10():

log10(-10)

Warning: NaNs produced

[1] NaN

So it could be useful to redefine these functions to raise an error
instead, for example like this:

strict_sqrt <- function(x){

if(x < 0) stop("x is negative")

sqrt(x)

}

This function now throws an error for negative x:

157

6. Functional programming

strict_sqrt(-10)

Error in strict_sqrt(-10) : x is negative

However, it can be quite tedious to redefine every function that
we need in our pipeline, and remember, we don’t want to repeat
ourselves. So, because functions are nothing special, we can
define a function that takes a function as an argument, converts
any warning thrown by that function into an error, and returns
a new function. For example:

strictly <- function(f){
function(...){
tryCatch({
f(...)

},
warning = function(warning)stop("Can't do

that chief"))↪

}
}

This function makes use of tryCatch() which catches warn-
ings raised by an expression (in this example the expression
is f(...)) and then raises an error instead with the stop()
function. It is now possible to define new functions like this:

s_sqrt <- strictly(sqrt)

s_sqrt(-4)

Error in value[[3L]](cond) : Can't do that chief

158

6.2. Writing good functions

s_log <- strictly(log)

s_log(-4)

Error in value[[3L]](cond) : Can't do that chief

Functions that return functions are called function factories and
they’re incredibly useful. I use this so much that I’ve written
a package, available on CRAN, called {chronicler}, that does
this:

s_sqrt <- chronicler::record(sqrt)

result <- s_sqrt(-4)

result

NOK! Value computed unsuccessfully:

Nothing

This is an object of type `chronicle`.
Retrieve the value of this object with pick(.c,
"value").
To read the log of this object, call read_log(.c).

Because the expression above resulted in an error, Nothing is
returned. Nothing is a special value defined in the {maybe}
package (check it out, a very interesting package!). We can
then even read a log to see what went wrong:

159

6. Functional programming

chronicler::read_log(result)

[1] "Complete log:"
[2] "NOK! sqrt() ran unsuccessfully with following
exception: NaNs produced at 2024-02-13 09:14:40"
[3] "Total running time: 0.000768661499023438 secs"

The {purrr} package also comes with function factories that you
might find useful ({possibly}, {safely} and {quietly}).

In part 2 we will also learn about assertive programming, an-
other way of making our functions safer, as an alternative to
using function factories.

6.2.2. Optional arguments

It is possible to make functions’ arguments optional, by using
NULL. For example:

g <- function(x, y = NULL){
if(is.null(y)){
print("optional argument y is NULL")
x

} else {
if(y == 5) print("y is present"); x+y

}
}

Calling g(10) prints the message “Optional argument y is
NULL”, and returns 10. Calling g(10, 5) however, prints “y is
present” and returns 15. It is also possible to use missing():

160

6.2. Writing good functions

g <- function(x, y){
if(missing(y)){
print("optional argument y is missing")
x

} else {
if(y == 5) print("y is present"); x+y

}
}

I however prefer the first approach, because it is clearer which
arguments are optional, which is not the case with the second
approach, where you need to read the body of the function.

6.2.3. Safe functions

It is important that your functions are safe and predictable. You
should avoid writing functions that behave like the nchar() base
function. Let’s see why this function is not safe:

nchar("10000000")

[1] 8

It returns the expected result of 8. But what if I remove the
quotes?

nchar(10000000)

[1] 5

What is going on here? I’ll give you a hint: simply type
10000000 in the console:

161

6. Functional programming

10000000

[1] 1e+07

10000000 gets represented as 1e+07 by R. This number in scien-
tific notation gets then converted into the character “1e+07” by
nchar(), and this conversion happens silently. nchar() then
counts the number of characters, and correctly returns 5. The
problem is that it doesn’t make sense to provide a number to
a function that expects a character. This function should have
returned an error message, or at the very least raised a warning
that the number got converted into a character. Here is how
you could rewrite nchar() to make it safer:

nchar2 <- function(x, result = 0){

if(!isTRUE(is.character(x))){
stop(paste0("x should be of type

'character', but is of type '",↪

typeof(x), "' instead."))
} else if(x == ""){
result

} else {
result <- result + 1
split_x <- strsplit(x, split = "")[[1]]
nchar2(paste0(split_x[-1],

collapse = ""), result)
}

}

This function now returns an error message if the input is not a
character:

162

6.2. Writing good functions

nchar2(10000000)

Error in nchar2(10000000) : x should be of type
'character', but is of type 'integer' instead.

This section is in a sense an introduction to assertive program-
ming. As mentioned in the section on function factories, we
will be learning about assertive programming in greater detail
in part 2 of the book.

6.2.4. Recursive functions

You may have noticed in the last lines of nchar2() (defined
above) that nchar2() calls itself. A function that calls itself in
its own body is called a recursive function. It is sometimes easier
to define a function in its recursive form than in an iterative form.
The most common example is the factorial function. However,
there is an issue with recursive functions (in the R programming
language, other programming languages may not have the same
problem, like Haskell): while it is sometimes easier to write a
function using a recursive algorithm than an iterative algorithm,
like for the factorial function, recursive functions in R are quite
slow. Let’s take a look at two definitions of the factorial function,
one recursive, the other iterative:

fact_iter <- function(n){
result = 1
for(i in 1:n){
result = result * i

}
result

163

6. Functional programming

}

fact_recur <- function(n){
if(n == 0 || n == 1){
result = 1
} else {
n * fact_recur(n-1)

}
}

Using the {microbenchmark} package we can benchmark the
code:

microbenchmark::microbenchmark(
fact_recur(50),
fact_iter(50)

)

Unit: microseconds
expr min lq mean median
uq max neval

fact_recur(50) 21.501 21.701 23.82701 21.901
22.0515 68.902 100
fact_iter(50) 2.000 2.101 2.74599 2.201
2.3510 21.000 100

We see that the recursive factorial function is 10 times slower
than the iterative version. In this particular example it doesn’t
make much of a difference, because the functions only take mi-
croseconds to run. But if you’re working with more complex
functions, this is a problem. If you want to keep using the re-
cursive function and not switch to an iterative algorithm, there
are ways to make them faster. The first is called trampolining.

164

6.2. Writing good functions

I won’t go into details, but if you’re interested, there is an R
package that allows you to use trampolining with R, aptly called
{trampoline}1. Another solution is using the {memoise}2 pack-
age. Again, I won’t go into details. So if you want to use and
optimize recursive functions, take a look at these packages.

6.2.5. Anonymous functions

It is possible to define a function and not give it a name. For
example:

function(x)(x+1)(10)

Since R version 4.1, there is even a shorthand notation for anony-
mous functions:

(\(x)(x+1))(10)

Because we don’t name them, we cannot reuse them. So why is
this useful? Anonymous functions are useful when you need to
apply a function somewhere inside a pipe once, and don’t want
to define a function just for this. This will become clearer once
we learn about lists, but before that, let’s philosophize a bit.

6.2.6. The Unix philosophy applied to R

This is the Unix philosophy: Write programs that
do one thing and do it well. Write programs to work

1https://rdinnager.github.io/trampoline/
2https://memoise.r-lib.org/

165

https://rdinnager.github.io/trampoline/
https://memoise.r-lib.org/

6. Functional programming

together. Write programs to handle text streams,
because that is a universal interface.

Doug McIlroy, in A Quarter Century of Unix3

We can take inspiration from the Unix philosophy and rewrite
it for our purposes:

Write functions that do one thing and do it well. Write functions
that work together. Write functions that handle lists, because that
is a universal interface.

Strive for writing simple functions that only perform one task.
Don’t hesitate to split a big function into smaller ones. Small
functions that only perform one task are easier to maintain,
test, document and debug. These smaller functions can then
be chained using the |> operator. In other words, it is prefer-
able to have something like:

a |> f() |> g() |> h()

where a is for example a path to a data set, and where f(), g()
and h() successively read, clean, and plot the data, than having
something like:

big_function(a)

that does all the steps above in one go.

This idea of splitting the problem into smaller chunks, each
chunk in turn split into even smaller units that can be handled
by functions and then the results of these function combined
into a final output is called composition.

The advantage of splitting big_function() into f(), g() and
h() is that you can eat the elephant one bite at a time, and

3https://stackoverflow.com/a/68690065/1298051

166

6.3. Lists: a powerful data-structure

also reuse these smaller functions in other projects more easily.
So what’s important is that you can make small functions work
together by sharing a common interface. The list is usually a
good candidate for this.

6.3. Lists: a powerful data-structure

Lists are the second important ingredient of functional program-
ming. In the R philosophy inspired by the UNIX philosophy, I
stated that lists are a universal interface in R, so our functions
should handle lists. This of course depends on what it is you’re
doing. If you need functions to handle numbers, then there’s lit-
tle value in placing these numbers inside lists. But in practice,
you will very likely manipulate objects that are more complex
than numbers, and this is where lists come into play.

6.3.1. Lists all the way down

Lists are extremely flexible, and most of the very complex ob-
jects classes that you manipulate are actually lists, but just
fancier. For example, a data frame is a list:

data(mtcars)

typeof(mtcars)

[1] "list"

A fitted model is a list:

167

6. Functional programming

my_model <- lm(hp ~ mpg, data = mtcars)

typeof(my_model)

[1] "list"

A ggplot is a list:

library(ggplot2)

my_plot <- ggplot(data = mtcars) +
geom_line(aes(y = hp, x = mpg))

typeof(my_plot)

[1] "list"

It’s lists all the way down, and it’s not a coincidence; it’s because
lists are very powerful. So it’s important to know what you can
do with lists.

6.3.2. Lists can hold many things

If you write a function that needs to return many objects, the
only solution is to place them inside a list. For example, consider
this function:

sqrt_newton <- function(a,
init = 1,
eps = 0.01,
steps = 1){

168

6.3. Lists: a powerful data-structure

stopifnot(a >= 0)
while(abs(init**2 - a) > eps){

init <- 1/2 *(init + a/init)
steps <- steps + 1

}
list(
"result" = init,
"steps" = steps

)
}

This function returns the square root of a number using New-
ton’s algorithm, as well as the number of steps, or iterations, it
took to reach the solution:

result_list <- sqrt_newton(1600)

result_list

$result
[1] 40

$steps
[1] 10

It is quite common to print the number of steps to the console
instead of returning them. But the issue with a function that
prints something to the console instead of returning it, is that
such a function is not pure, as it changes something outside
of its scope (it prints to the console!). And if you need the
information that got printed (for example, if you want to count
all the steps it took to run the script from start to finish), it is
lost. It gets printed, and that’s it. It is preferable to instead

169

6. Functional programming

make the function pure by returning everything inside a neat list.
It is then possible to separately save these objects if needed:

result <- result_list$result

result_steps <- result_list$steps

Or you could define functions that know how to deal with the
list:

f <- function(result_list){
list(
"result" = result_list$result * 10,
"steps" = result_list$steps + 1
)

}

f(result_list)

$result
[1] 400

$steps
[1] 11

It all depends on what you want to do. But it is usually better
to keep everything neatly inside a list.

Lists can also hold objects of different types:

list(
"a" = head(mtcars),
"b" = ~lm(y ~ x)

170

6.3. Lists: a powerful data-structure

)

$a
mpg cyl disp hp drat wt qsec
vs am

Mazda RX4 21.0 6 160 110 3.90 2.620 16.46
0 1
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02
0 1
Datsun 710 22.8 4 108 93 3.85 2.320 18.61
1 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44
1 0
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02
0 0
Valiant 18.1 6 225 105 2.76 3.460 20.22
1 0

gear carb
Mazda RX4 4 4
Mazda RX4 Wag 4 4
Datsun 710 4 1
Hornet 4 Drive 3 1
Hornet Sportabout 3 2
Valiant 3 1

$b
~lm(y ~ x)

The list above has two elements, the first is the head of the
mtcars data frame, the second is a formula object. Lists can
even hold other lists:

171

6. Functional programming

list(
"a" = head(mtcars),
"b" = list(
"c" = sqrt,
"d" = my_plot # Remember this ggplot object

from before?↪

)
)

$a
mpg cyl disp hp drat wt qsec
vs am

Mazda RX4 21.0 6 160 110 3.90 2.620 16.46
0 1
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02
0 1
Datsun 710 22.8 4 108 93 3.85 2.320 18.61
1 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44
1 0
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02
0 0
Valiant 18.1 6 225 105 2.76 3.460 20.22
1 0

gear carb
Mazda RX4 4 4
Mazda RX4 Wag 4 4
Datsun 710 4 1
Hornet 4 Drive 3 1
Hornet Sportabout 3 2
Valiant 3 1

$b

172

6.3. Lists: a powerful data-structure

bc
function (x) .Primitive("sqrt")

bd

100

200

300

10 15 20 25 30 35
mpg

hp

Use this to your advantage.

6.3.3. Lists as the cure to loops

Loops are incredibly useful, and you are likely familiar with
them. The problem with loops is that they are a concept from
iterative programming, not functional programming, and this
is a problem because loops rely on changing the state of your
program to run. For example, let’s suppose that you wish to use
a for-loop to compute the sum of the first 100 integers:

173

6. Functional programming

result <- 0

for (i in 1:100){
result <- result + i

}

print(result)

[1] 5050

If you run ls() now, you should see that there’s a variable i in
your global environment. This could cause issues further down
in your pipeline if you need to re-use i. Also, writing loops is,
in my opinion, quite error prone. But how can we avoid using
loops? Looping in a functional programming language involves
using higher-order functions and lists. A reminder: a higher-
order function is a function that takes another function as an
argument. Looping is a task like any other, so I can write a
function that does the looping. This function, which I’ll call
looping(), will take a function as an argument, as well as a list.
The list will serve as the container to hold our numbers:

looping <- function(a_list, a_func, init = NULL,
...){↪

If the user does not provide an `init`
value,↪

set the head of the list as the initial
value↪

if(is.null(init)){
init <- a_list[[1]]
a_list <- tail(a_list, -1)

174

6.3. Lists: a powerful data-structure

}

Separate the head from the tail of the list
and apply the function to the initial value

and the head of the list↪

head_list = a_list[[1]]
tail_list = tail(a_list, -1)
init = a_func(init, head_list, ...)

Check if we're done: if there is still some
tail,↪

rerun the whole thing until there's no tail
left↪

if(length(tail_list) != 0){
looping(tail_list, a_func, init, ...)

}
else {
init

}
}

Now, this might seem much more complicated than a for loop.
However, now that we have abstracted the loop away inside a
function, we can keep reusing this function:

looping(as.list(seq(1, 100)), `+`)

[1] 5050

Of course, because this is so useful, looping() actually ships
with R, and is called Reduce():

175

6. Functional programming

Reduce(`+`, seq(1, 100)) # the order of the
arguments is `function` then `list` for
`Reduce()`

↪

↪

[1] 5050

But this is not the only way that we can loop. We can also write
a loop that applies a function to each element of a list, instead
of operating on the whole list:

result <- as.list(seq(1, 5))
for (i in seq_along(result)){

result[[i]] <- sqrt(result[[i]])
}

print(result)

[[1]]
[1] 1

[[2]]
[1] 1.414214

[[3]]
[1] 1.732051

[[4]]
[1] 2

[[5]]
[1] 2.236068

Here again, we have to pollute the global environment by first

176

6.3. Lists: a powerful data-structure

creating a vessel for our results, and then apply the function at
each index. We can abstract this process away in a function:

applying <- function(a_list, a_func, ...){

head_list = a_list[[1]]
tail_list = tail(a_list, -1)
result = a_func(head_list, ...)

Check if we're done: if there is still some
tail, rerun the whole thing until there's
no tail left

↪

↪

if(length(tail_list) != 0){
append(result, applying(tail_list, a_func,

...))↪

}
else {
result

}
}

Once again this might seem complicated, and I would agree.
Abstraction is complex. But once we have it, we can focus on
the task at hand, instead of having to always tell the computer
what we want:

applying(as.list(seq(1, 5)), sqrt)

[1] 1.000000 1.414214 1.732051 2.000000 2.236068

Of course, R ships with its own, much more efficient, implemen-
tation of this function:

177

6. Functional programming

lapply(list(seq(1, 5)), sqrt)

[[1]]
[1] 1.000000 1.414214 1.732051 2.000000 2.236068

In other programming languages, lapply() is often called map().
The {purrr} package ships with other such useful higher-order
functions that abstract loops away. For example, there’s the
function called map2(), that maps a function of two arguments
to each element of two atomic vectors or lists, two at a time:

library(purrr)

map2(
.x = seq(1, 5),
.y = seq(1, 5),
.f = `+`
)

[[1]]
[1] 2

[[2]]
[1] 4

[[3]]
[1] 6

[[4]]
[1] 8

[[5]]
[1] 10

178

6.3. Lists: a powerful data-structure

If you have more than two lists, you can use pmap() instead.

Another important, idiomatic, way to deal with loops in R is to
use matrix algebra instead. For example, to compute the sum
of the first 100 integers, the following approach is possible:

rep(1, 100) %*% seq(1, 100)

[,1]
[1,] 5050

Also, don’t forget that many functions are vectorized by default,
so no loop is required:

sqrt(seq(1, 5))

[1] 1.000000 1.414214 1.732051 2.000000 2.236068

or:

seq(1, 5) + seq(1, 5)

[1] 2 4 6 8 10

Before diving directly into loops, check if the functions you’re us-
ing are vectorized, or if there is a simple way to express the com-
putation you want to run in terms of matrix multiplication.

6.3.4. Data frames

As mentioned in the introduction of this section, data frames are
a special type of list of atomic vectors. This means that just as
I can use lapply() to compute the square root of the elements

179

6. Functional programming

of an atomic vector, as shown previously, I can also operate on
all the columns of a data frame. For example, it is possible to
determine the class of every column of a data frame like this:

lapply(iris, class)

$Sepal.Length
[1] "numeric"

$Sepal.Width
[1] "numeric"

$Petal.Length
[1] "numeric"

$Petal.Width
[1] "numeric"

$Species
[1] "factor"

Unlike a list however, the elements of a data frame must be
of the same length. Data frames remain very flexible though,
and using what we have learned until now it is possible to use
the data frame as a structure for all our computations. For
example, suppose that we have a data frame that contains data
on unemployment for the different subnational divisions of the
Grand-Duchy of Luxembourg, the country the author of this
book hails from. Let’s suppose that I want to generate several
plots, per subnational division and per year. Typically, we would
use a loop for this, but we can use what we’ve learned here, as
well as some functions from the {dplyr}, {purrr}, {ggplot2}
and {tidyr} packages. I will be downloading data that I made

180

6.3. Lists: a powerful data-structure

available inside a package, but instead of installing the package,
I will download the .rda file directly (which is the file format
of packaged data) and then load that data into our R session
(instead of downloading from the long Github url, I download
the data from a shortened is.gd link):

Create a temporary file
unemp_path <- tempfile(fileext = ".rda")

Download the data and save it to the path of
the temporary file↪

avoids having to install the package from
Github↪

download.file(
"https://is.gd/l57cNX",
destfile = unemp_path)

Load the data. The data is now available as
'unemp'↪

load(unemp_path)

Let’s load the required packages and take a look at the data:

library(dplyr)

Attaching package: 'dplyr'

The following objects are masked from
'package:stats':

filter, lag

181

6. Functional programming

The following objects are masked from
'package:base':

intersect, setdiff, setequal, union

library(purrr)
library(ggplot2)
library(tidyr)

glimpse(unemp)

Rows: 472
Columns: 9
$ year <dbl> 2013, 2013,
2013, 201~
$ place_name <chr> "Luxembourg",
"Capell~
$ level <chr> "Country",
"Canton", ~
$ total_employed_population <dbl> 223407, 17802,
1703, ~
$ of_which_wage_earners <dbl> 203535, 15993,
1535, ~
$ of_which_non_wage_earners <dbl> 19872, 1809,
168, 94,~
$ unemployed <dbl> 19287, 1071,
114, 25,~
$ active_population <dbl> 242694, 18873,
1817, ~
$ unemployment_rate_in_percent <dbl> 7.947044,
5.674773, 6~

Column names are self-descriptive, but the level column needs
some explanations. level contains the administrative divisions

182

6.3. Lists: a powerful data-structure

of the country, so the country of Luxembourg, then the Cantons
and then the Communes.

Remember that Luxembourg can refer to the country, the canton
or the commune of Luxembourg. Now let’s suppose that I want
a separate plot for the three communes of Luxembourg, Esch-
sur-Alzette and Wiltz. Instead of creating three separate data
frames and feeding them to the same ggplot code, I can instead
take advantage of the fact that data frames are lists, and are
thus quite flexible. Let’s start with filtering:

filtered_unemp <- unemp %>%
filter(
level == "Commune",
place_name %in% c("Luxembourg",
"Esch-sur-Alzette", "Wiltz")↪

)

glimpse(filtered_unemp)

Rows: 12
Columns: 9
$ year <dbl> 2013, 2013,
2013, 201~
$ place_name <chr>
"Esch-sur-Alzette", "~
$ level <chr> "Commune",
"Commune",~
$ total_employed_population <dbl> 12725, 39513,
2344, 1~
$ of_which_wage_earners <dbl> 12031, 35531,
2149, 1~
$ of_which_non_wage_earners <dbl> 694, 3982, 195,
703, ~

183

6. Functional programming

$ unemployed <dbl> 2054, 3855,
318, 1997~
$ active_population <dbl> 14779, 43368,
2662, 1~
$ unemployment_rate_in_percent <dbl> 13.898099,
8.889043, ~

We are now going to use the fact that data frames are lists, and
that lists can hold any type of object. For example, remember
this list from before where one of the elements is a data frame,
and the second one a formula:

list(
"a" = head(mtcars),
"b" = ~lm(y ~ x)
)

$a
mpg cyl disp hp drat wt qsec
vs am

Mazda RX4 21.0 6 160 110 3.90 2.620 16.46
0 1
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02
0 1
Datsun 710 22.8 4 108 93 3.85 2.320 18.61
1 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44
1 0
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02
0 0
Valiant 18.1 6 225 105 2.76 3.460 20.22
1 0

gear carb
Mazda RX4 4 4

184

6.3. Lists: a powerful data-structure

Mazda RX4 Wag 4 4
Datsun 710 4 1
Hornet 4 Drive 3 1
Hornet Sportabout 3 2
Valiant 3 1

$b
~lm(y ~ x)

{dplyr} comes with a function called group_nest() which
groups the data frame by a variable (such that the next
computations will be performed group-wise) and then nests the
other columns into a smaller data frame. Let’s try it and see
what happens:

nested_unemp <- filtered_unemp %>%
group_nest(place_name)

Let’s see what this looks like:

nested_unemp

A tibble: 3 x 2
place_name data
<chr> <list<tibble[,8]>>

1 Esch-sur-Alzette [4 x 8]
2 Luxembourg [4 x 8]
3 Wiltz [4 x 8]

nested_unemp is a new data frame of 3 rows, one per com-
mune (“Esch-sur-Alzette”, “Luxembourg”, “Wiltz”), and of two
columns, one for the names of the communes, and the other
contains every other variable inside a smaller data frame. So
this is a data frame that has one column where each element of

185

6. Functional programming

that column is itself a data frame. Such a column is called a
list-column. This is essentially a list of lists.

Let’s now think about this for a moment. If the column titled
data is a list of data frames, it should be possible to use a
function like map() or lapply() to apply a function on each of
these data frames. Remember that map() or lapply() require
a list of elements of whatever type and a function that accepts
objects of this type as input. So this means that we could apply
a function that plots the data to each element of the column
titled data. Since each element of this column is a data frame,
this function needs a data frame as an input. As a first and
simple example to illustrate this, let’s suppose that we want to
determine the number of rows of each data frame. This is how
we would do it:

nested_unemp %>%
mutate(nrows = map(data, nrow))

A tibble: 3 x 3
place_name data nrows
<chr> <list<tibble[,8]>> <list>

1 Esch-sur-Alzette [4 x 8] <int [1]>
2 Luxembourg [4 x 8] <int [1]>
3 Wiltz [4 x 8] <int [1]>

’data’ is the name of
the list-column that contains
the smaller data frames

The new column, titled nrows is a list of integers. We can sim-
plify it by converting it directly to an atomic vector of integers
by using map_int() instead of map():

186

6.3. Lists: a powerful data-structure

nested_unemp %>%
mutate(nrows = map_int(data, nrow))

A tibble: 3 x 3
place_name data nrows
<chr> <list<tibble[,8]>> <int>

1 Esch-sur-Alzette [4 x 8] 4
2 Luxembourg [4 x 8] 4
3 Wiltz [4 x 8] 4

Let’s try a more complex example now. What if we want to
filter rows (of course, the simplest way would be to filter the
rows we need before nesting the data frame)? We need to apply
the function filter() where its first argument is a data frame
and the second argument is a predicate:

nested_unemp %>%
mutate(nrows = map(data, \(x)filter(x, year ==

2015)))↪

A tibble: 3 x 3
place_name data nrows
<chr> <list<tibble[,8]>> <list>

1 Esch-sur-Alzette [4 x 8] <tibble [1 x
8]>
2 Luxembourg [4 x 8] <tibble [1 x
8]>
3 Wiltz [4 x 8] <tibble [1 x
8]>

In this case, we need to use an anonymous function. This is be-
cause filter() has two arguments and we need to make clear
what it is we are mapping over and what argument stays fixed;

187

6. Functional programming

we are mapping over (iterating) the data frames but the predi-
cate year == 2015 stays fixed.

We are now ready to plot our data. The best way to continue
is to first get the function right by creating one plot for one
single commune. Let’s select the dataset for the commune of
Luxembourg:

lux_data <- nested_unemp %>%
filter(place_name == "Luxembourg") %>%
unnest(data)

To plot this data, we can now write the required ggplot2()
code:

ggplot(data = lux_data) +
theme_minimal() +
geom_line(
aes(year, unemployment_rate_in_percent,

group = 1)↪

) +
labs(title = "Unemployment in Luxembourg")

188

6.3. Lists: a powerful data-structure

8.1

8.4

8.7

2013 2014 2015 2016
year

un
em

pl
oy

m
en

t_
ra

te
_i

n_
pe

rc
en

t
Unemployment in Luxembourg

To turn the lines of code above into a function, you need to think
about how many arguments that function would have. There is
an obvious one, the data itself (in the snippet above, the data
is the lux_data object). Another one that is less obvious is in
the title:

labs(title = "Unemployment in Luxembourg")

Ideally, we would want that title to change depending on the
data set. So we could write the function like so:

make_plot <- function(x, y){
ggplot(data = x) +
theme_minimal() +
geom_line(
aes(year, unemployment_rate_in_percent,

group = 1)↪

) +

189

6. Functional programming

labs(title = paste("Unemployment in", y))
}

Let’s try it on our data:

make_plot(lux_data, "Luxembourg")

8.1

8.4

8.7

2013 2014 2015 2016
year

un
em

pl
oy

m
en

t_
ra

te
_i

n_
pe

rc
en

t

Unemployment in Luxembourg

Ok, so now, we simply need to apply this function to our nested
data frame:

nested_unemp <- nested_unemp %>%
mutate(plots = map2(
.x = data, # column of data frames
.y = place_name, # column of commune names
.f = make_plot

))

190

6.3. Lists: a powerful data-structure

nested_unemp

A tibble: 3 x 3
place_name data plots
<chr> <list<tibble[,8]>> <list>

1 Esch-sur-Alzette [4 x 8] <gg>
2 Luxembourg [4 x 8] <gg>
3 Wiltz [4 x 8] <gg>

If you look at the plots column, you see that it is a list of gg
objects: these are our plots. Let’s take a look at them:

nested_unemp$plots

[[1]]

12.5

13.0

13.5

2013 2014 2015 2016
year

un
em

pl
oy

m
en

t_
ra

te
_i

n_
pe

rc
en

t

Unemployment in Esch−sur−Alzette

191

6. Functional programming

[[2]]

8.1

8.4

8.7

2013 2014 2015 2016
year

un
em

pl
oy

m
en

t_
ra

te
_i

n_
pe

rc
en

t

Unemployment in Luxembourg

[[3]]

192

6.3. Lists: a powerful data-structure

11.6

11.7

11.8

11.9

12.0

12.1

2013 2014 2015 2016
year

un
em

pl
oy

m
en

t_
ra

te
_i

n_
pe

rc
en

t
Unemployment in Wiltz

We could also have used an anonymous function (but it is more
difficult to get right):

nested_unemp %>%
mutate(plots2 = map2(
.x = data,
.y = place_name,
.f = \(.x,.y)(

ggplot(data = .x) +
theme_minimal() +
geom_line(
aes(year,

unemployment_rate_in_percent,
group = 1)

↪

↪

) +

193

6. Functional programming

labs(title =
paste("Unemployment in",
.y))

↪

↪

)
)

) %>%
pull(plots2)

[[1]]

12.5

13.0

13.5

2013 2014 2015 2016
year

un
em

pl
oy

m
en

t_
ra

te
_i

n_
pe

rc
en

t

Unemployment in Esch−sur−Alzette

[[2]]

194

6.3. Lists: a powerful data-structure

8.1

8.4

8.7

2013 2014 2015 2016
year

un
em

pl
oy

m
en

t_
ra

te
_i

n_
pe

rc
en

t
Unemployment in Luxembourg

[[3]]

11.6

11.7

11.8

11.9

12.0

12.1

2013 2014 2015 2016
year

un
em

pl
oy

m
en

t_
ra

te
_i

n_
pe

rc
en

t

Unemployment in Wiltz

195

6. Functional programming

This list-column based workflow is extremely powerful and I
highly advise you to take the required time to master it. Remem-
ber, we never want to have to repeat ourselves. This approach
might seem more complicated than calling make_plot() three
times, but imagine that you need to do this for several coun-
tries, several variables, etc… What are you going to do, copy
and paste code everywhere? This gets very tedious and more
importantly, very error-prone, because now you’ve just intro-
duced many points of failure by having so much copy-pasted
code. You could of course use a loop instead of this list-column
based workflow. But as mentioned, the issue with loops is that
you have to interact with the global environment, which can
lead to other issues. But whatever you end up using, you need
to avoid copy and pasting at all costs.

6.4. Functional programming in R

Up until now I focused on general concepts rather than on
specifics of the R programming language when it comes to func-
tional programming. In this section, we will be focusing entirely
on R-specific capabilities and packages for functional program-
ming.

6.4.1. Base capabilities

R is a functional programming language (but not only), and as
such it comes with many functions out of the box to write func-
tional code. We have already discussed lapply() and Reduce().
You should know that depending on what you want to achieve,
there are other functions that are similar to lapply(): apply(),
sapply(), vapply(), mapply() and tapply(). There’s also

196

6.4. Functional programming in R

Map() which is a wrapper around mapply(). Each function per-
forms the same basic task of applying a function over all the
elements of a list or list-like structure, but it can be hard to
keep them apart and when you should use one over another.
This is why {purrr}, which we will discuss in the next section,
is quite an interesting alternative to base R’s offering.

Another one of the quintessential functional programming
functions (alongside Reduce() and Map()) that ships with R
is Filter(). If you know dplyr::filter() you should be
familiar with the concept of filtering rows of a data frame
where the elements of one particular column satisfy a predicate.
Filter() works the same way, but focusing on lists instead of
data frame:

Filter(is.character,
list(

seq(1, 5),
"Hey")

)

[[1]]
[1] "Hey"

The call above only returns the elements where is.character()
evaluates to TRUE.

Another useful function is Negate() which is a function factory
that takes a boolean function as an input and returns the op-
posite boolean function. As an illustration, suppose that in the
example above we wanted to get everything but the character:

Filter(Negate(is.character),
list(

197

6. Functional programming

seq(1, 5),
"Hey")

)

[[1]]
[1] 1 2 3 4 5

There are some other functions like this that you might want to
check out: type ?Negate in console to read more about them.

Sometimes you may need to run code with side-effects, but want
to avoid any interaction between these side-effects and the global
environment. For example, you might want to run some code
that creates a plot and saves it to disk, or code that creates
some data and writes them to disk. local() can be used for
this. local() runs code in a temporary environment that gets
discarded at the end:

local({
a <- 2

})

Variable a was created inside this local environment. Checking
if it exists now yields FALSE:

exists("a")

[1] FALSE

We will be using this technique later in the book to keep our
scripts pure.

Before continuing with R packages that extend R’s functional
programming capabilities it’s also important to stress that just

198

6.4. Functional programming in R

as R is a functional programming language, it is also an object
oriented language. In fact, R is what John Chambers called a
functional OOP language (Chambers (2014)). I won’t delve too
much into what this means (read Wickham (2019) for this), but
as a short discussion, consider the print() function. Depending
on what type of object the user gives it, it seems as if somehow
print() knows what to do with it:

print(5)

[1] 5

print(head(mtcars))

mpg cyl disp hp drat wt qsec
vs am

Mazda RX4 21.0 6 160 110 3.90 2.620 16.46
0 1
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02
0 1
Datsun 710 22.8 4 108 93 3.85 2.320 18.61
1 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44
1 0
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02
0 0
Valiant 18.1 6 225 105 2.76 3.460 20.22
1 0

gear carb
Mazda RX4 4 4
Mazda RX4 Wag 4 4
Datsun 710 4 1
Hornet 4 Drive 3 1

199

6. Functional programming

Hornet Sportabout 3 2
Valiant 3 1

print(str(mtcars))

'data.frame': 32 obs. of 11 variables:
$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4
22.8 19.2 ...
$ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
$ disp: num 160 160 108 258 360 ...
$ hp : num 110 110 93 110 175 105 245 62 95 123
...
$ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69
3.92 3.92 ...
$ wt : num 2.62 2.88 2.32 3.21 3.44 ...
$ qsec: num 16.5 17 18.6 19.4 17 ...
$ vs : num 0 0 1 1 0 1 0 1 1 1 ...
$ am : num 1 1 1 0 0 0 0 0 0 0 ...
$ gear: num 4 4 4 3 3 3 3 4 4 4 ...
$ carb: num 4 4 1 1 2 1 4 2 2 4 ...

NULL

This works by essentially mixing both functional and object-
oriented programming, hence functional OOP. Let’s take a closer
look at the source code of print() by simply typing print with-
out brackets, into a console:

print

function (x, ...)
UseMethod("print")
<bytecode: 0x55c42fb82008>
<environment: namespace:base>

200

6.4. Functional programming in R

Quite unexpectedly, the source code of print() is one line long
and is just UseMethod("print"). So all print() does is use
a generic method called “print”. If your text editor has auto-
completion enabled, you might see that there are actually many
print() functions. For example, type print.data.frame into
a console:

print.data.frame

function (x, ..., digits = NULL, quote = FALSE,
right = TRUE,

row.names = TRUE, max = NULL)
{

n <- length(row.names(x))
if (length(x) == 0L) {

cat(sprintf(ngettext(n, "data frame with 0
columns and %d row",

"data frame with 0 columns and %d
rows"), n), "\n",
sep = "")

}
else if (n == 0L) {

print.default(names(x), quote = FALSE)
cat(gettext("<0 rows> (or 0-length
row.names)\n"))

}
else {

if (is.null(max))
max <- getOption("max.print", 99999L)

if (!is.finite(max))
stop("invalid 'max' /
getOption(\"max.print\"): ",

max)

201

6. Functional programming

omit <- (n0 <- max%/%length(x)) < n
m <- as.matrix(format.data.frame(if (omit)

x[seq_len(n0), , drop = FALSE]
else x, digits = digits, na.encode = FALSE))
if (!isTRUE(row.names))

dimnames(m)[[1L]] <- if
(isFALSE(row.names))

rep.int("", if (omit)
n0

else n)
else row.names

print(m, ..., quote = quote, right = right,
max = max)
if (omit)

cat(" [reached 'max' /
getOption(\"max.print\") -- omitted",

n - n0, "rows]\n")
}
invisible(x)

}
<bytecode: 0x55c4319c00e8>
<environment: namespace:base>

This is the print function for data.frame objects. So what
print() does, is look at the class of its argument x, and then
look for the right print function to call. In more traditional
OOP languages, users would type something like:

mtcars.print()

In these languages, objects encapsulate methods (the equiva-
lent of our functions), so if mtcars is a data frame, it encap-
sulates a print() method that then does the printing. R is
different, because classes and methods are kept separate. If a

202

6.4. Functional programming in R

package developer creates a new object class, then the developer
also must implement the required methods. For example in the
{chronicler} package, the chronicler class is defined along-
side the print.chronicler() function to print these objects.

All of this to say that if you want to extend R by writing pack-
ages, learning some OOP essentials is also important. But for
data analysis, functional programming does the job perfectly
well. To learn more about R’s different OOP systems (yes, R
can do OOP in different ways and the one I sketched here is the
simplest, but probably the most used as well), take a look at
Wickham (2019).

6.4.2. purrr

The {purrr} package, developed by Posit (formerly RStudio),
contains many functions to make functional programming with
R more smooth. In the previous section, we discussed the
apply() family of function; they all do a very similar thing,
which is looping over a list and applying a function to the
elements of the list, but it is not quite easy to remember which
one does what. Also, for some of these functions like apply(),
the list argument comes first, and then the function, but in
the case of mapply(), the function comes first. This type of
inconsistencies can be frustrating. Another issue with these
functions is that it is not always easy to know what type the
output is going to be. List? Atomic vector? Something else?

{purrr} solves this issue by offering the map() family of func-
tions, which behave in a very consistent way. The basic function
is called map() and we’ve already used it:

map(seq(1, 5), sqrt)

203

6. Functional programming

[[1]]
[1] 1

[[2]]
[1] 1.414214

[[3]]
[1] 1.732051

[[4]]
[1] 2

[[5]]
[1] 2.236068

But there are many interesting variants:

map_dbl(seq(1, 5), sqrt)

[1] 1.000000 1.414214 1.732051 2.000000 2.236068

map_dbl() coerces the output to an atomic vector of doubles
instead of a list of doubles. Then there’s:

map_chr(letters, toupper)

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L"
"M" "N"

[15] "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

for when the output needs to be an atomic vector of charac-
ters.

204

6.4. Functional programming in R

There are many others, so take a look at the documentation
with ?map. There’s also walk() which is used if you’re only
interested in the side-effect of the function (for example if the
function takes paths as input and saves something to disk).

{purrr} also has functions to replace Reduce(), simply called
reduce() and accumulate(), and there are many, many other
useful functions. Read through the documentation of the pack-
age4 and take the time to learn about all it has to offer.

6.4.3. withr

{withr} is a powerful package that makes it easy to “purify”
functions that behave in a way that can cause problems. Re-
member the function from the introduction that randomly gave
out a dish Bruno liked? Here it is again:

h <- function(name, food_list = list()){

food <- sample(c("lasagna", "cassoulet",
"feijoada"), 1)↪

food_list <- append(food_list, food)

print(paste0(name, " likes ", food))

food_list
}

For the same input, this function may return different outputs
so this function is not referentially transparent. So we improved

4https://purrr.tidyverse.org/reference/index.html

205

https://purrr.tidyverse.org/reference/index.html
https://purrr.tidyverse.org/reference/index.html

6. Functional programming

the function by adding calls to set.seed() like this:

h2 <- function(name, food_list = list(), seed =
123){↪

We set the seed, making sure that we get the
same selection of food for a given seed↪

set.seed(seed)
food <- sample(c("lasagna", "cassoulet",
"feijoada"), 1)↪

We now need to unset the seed, because if we
don't, guess what, the seed will stay set
for the whole session!

↪

↪

set.seed(NULL)

food_list <- append(food_list, food)

print(paste0(name, " likes ", food))

food_list
}

The problem with this approach is that we need to modify our
function. We can instead use withr::with_seed() to achieve
the same effect:

withr::with_seed(seed = 123,
h("Bruno"))

[1] "Bruno likes feijoada"

[[1]]

206

6.4. Functional programming in R

[1] "feijoada"

It is also easier to create a wrapper if needed:

h3 <- function(..., seed){
withr::with_seed(seed = seed,

h(...))
}

h3("Bruno", seed = 123)

[1] "Bruno likes feijoada"

[[1]]
[1] "feijoada"

In a previous example we downloaded a dataset and loaded it
into memory; we did so by first creating a temporary file, then
downloading it and then loading it. Suppose that instead of
loading this data into our session, we simply wanted to test
whether the link was still working. We wouldn’t want to keep
the loaded data in our session, so to avoid having to delete it
again manually, we could use with_tempfile():

withr::with_tempfile("unemp", {
download.file(
"https://is.gd/l57cNX",
destfile = unemp)

load(unemp)
nrow(unemp)
}

)

207

6. Functional programming

[1] 472

The data got downloaded, and then loaded, and then we com-
puted the number of rows of the data, without touching the
global environment, or state, of our current session.

Just like for {purrr}, {withr} has many useful functions which
I encourage you to familiarize yourself with5.

6.5. Conclusion

If there is only one thing that you should remember from this
chapter, it would be pure functions. Writing pure functions is
in my opinion not very difficult to do and comes with many
benefits. But avoiding loops and replacing them with higher-
order functions (lapply(), Reduce(), purrr::map() – and its
variants –) also pays off. While this chapter stresses the ad-
vantages of functional programming, you should not forget that
R is not a pure, and solely, functional programming language
and that other paradigms, like object-oriented programming, are
also available to you. So if your goal is to master the language
(instead of “just” using it to solve data analysis problems), then
you also need to know about R’s OOP capabilities.

5https://withr.r-lib.org/reference/index.html

208

https://withr.r-lib.org/reference/index.html

7. Literate programming

You now know about version control, how to collaborate us-
ing Github.com and functional programming. By only learning
about this, you have already made some massive steps towards
making your projects reproducible. Especially by using Git and
Github. Even if you’re using private repos and work in the pri-
vate sector, by using version control, you ensure that reusing
this code for future projects is much easier. Auditing is greatly
simplified as well.

But this book is still far from over. Let’s think about our project
up until now. We have downloaded some data, and wrote code
to analyse it. Fair enough. But usually, we don’t really stop
there. We now need to write a report, or maybe a Powerpoint
presentation. If you’re a researcher, you still need to write a
paper, just getting the results is not enough, and if you work in
the private sector, you also need to present the results of your
analysis to management.

209

7. Literate programming

Figure 7.1.: The cursed report drafting loop.

The problem is that writing code, getting some results, and
putting these results into a document (it doesn’t matter what
kind) is often very tedious. The picture above illustrates this
cursed report drafting loop. Get some results, copy and paste
images into Word or Powerpoint, get a change request, or notice
a mistake, and start from scratch again. If you’re using LaTeX
it’ll be easier for pictures, but you’ll still need to update tables
by hand each time you need to touch your analysis code.

Worse, what if you start with a Word or LaTeX document, but
then get asked to make a Powerpoint presentation as well? Then
you need to copy and paste everything again, but this time into
Powerpoint… and if you get a change request after you’re done
and need to start over, you might seriously consider raising goats
instead of dealing with this again.

But if we can make the loop look like this instead:

210

7.1. A quick history of literate programming

Figure 7.2.: The holy report drafting loop.

Basically, everything from cleaning, analysing and drafting is
done in one single step? Well, this is what literate programming
enables you to do. And even if you get asked to make a Power-
point presentation, you can start from the same source code as
the original report, and remove everything that you don’t need
and compile to a Powerpoint (or Beamer) presentation.

7.1. A quick history of literate
programming

In literate programming, authors mix code and prose, which
makes the output of their programs not just a series of tables,
or graphs or predictions, but a complete report that contains
the results of the analysis directly embedded into it. Scripts
written using literate programming are also very easy to compile,
or render, into a variety of document formats like html, docx,
pdf or even pptx. R supports several frameworks for literate
programming: Sweave, knitr and Quarto.

Sweave was the first tool available to R (and S) users, and al-
lowed the mixing of R and LaTeX code to create a document.
Friedrich Leisch developed Sweave in 2002 and described it in

211

7. Literate programming

his 2002 paper (Leisch 2002). As Leisch argues, the traditional
way of writing a report as part of a statistical data analysis
project uses two separate steps: running the analysis using some
software, and then copy and pasting the results into a word pro-
cessing tool (as illustrated above). To really drive that point
home: the problem with this approach is that much time is
wasted copy and pasting things, so experimenting with differ-
ent layouts or data analysis techniques is very time-consuming.
Copy and paste mistakes will also happen (it’s not a question
of if, but when) and updating reports (for example, when new
data comes in) means that someone will have, again, to copy
and paste the updated results into a new document.

Sweave makes it possible to embed the analysis in the final docu-
ment itself, by providing a way to mix LaTeX and R code which
gets executed whenever the final, output document gets com-
piled. This gives practitioners considerable time savings because
it eliminates the copy and pasting of results from R outputs into
a document.

The snippet below shows the example from Leisch’s paper:

\documentclass[a4paper]{article}

\begin{document}

In this example we embed parts of the examples from
the
\texttt{kruskal.test} help page into a LaTeX
document:

<<>>=
data (airquality)
kruskal.test(Ozone ~ Month, data = airquality)
@

212

7.1. A quick history of literate programming

which shows that the location parameter of the Ozone
distribution varies significantly from month to
month.
Finally we include a boxplot of the data:

\begin{center}
<<fig=TRUE,echo=FALSE>>=
boxplot(Ozone ~ Month, data = airquality)
@
\end{center}

\end{document}

Even if you’ve never seen a LaTeX source file, you should be able
to figure out what’s going on. The first line states what type of
document we’re writing. Then comes \begin{document} which
tells the compiler where the document starts. Then comes the
content. You can see that it’s a mixture of plain English with R
code defined inside chunks starting with <<>>= and ending with
@. Finally, the document ends with \end{document}. Getting
a human-readable PDF from this source is a two-step process:
first, this source gets converted into a .tex file and then this
.tex file into a PDF. Sweave is included with every R installa-
tion since version 1.5.0, and still works to this day. For example,
we can test that our Sweave installation works just fine by com-
piling the example above. This is what the final output looks
like:

213

7. Literate programming

Figure 7.3.: More than 20 years later, the output is still the
same.

Let me just state that the fact that it is still possible to compile
this example more than 20 years later is an incredible testament
to how mature and stable this software is (both R, Sweave, and

214

7.1. A quick history of literate programming

LaTeX). But as impressive as this is, LaTeX has a steep learning
curve, and Leisch even advocated the use of the Emacs text
editor to edit Sweave files, which also has a very steep learning
curve (but this is entirely optional; for example, I’ve edited and
compiled the example on the RStudio IDE).

The next generation of literate programming tools was provided
by a package called {knitr} in 2012. From the perspective of
the user, the biggest change from Sweave is that {knitr} is
able to use many different formats as source files. The one that
became very likely the most widely used format is a flavour of
the Markdown markup language, R Markdown (Rmd). But this
is not the only difference with Sweave:{knitr} can also run code
chunks for other languages, such as Python, Perl, Awk, Haskell,
bash and more (Xie 2014). Since version 1.18, {knitr} uses the
{reticulate} package to provide a Python engine for the Rmd
format.

215

7. Literate programming

To illustrate the Rmd format, let’s rewrite the example from
Leisch’s Sweave paper into it:

output: pdf_document

In this example we embed parts of the examples
from the↪

\texttt{kruskal.test} help page into a LaTeX
document:↪

```{r}
data (airquality)
kruskal.test(Ozone ~ Month, data = airquality)
```

which shows that the location parameter of the
Ozone↪

distribution varies significantly from month to
month.↪

Finally we include a boxplot of the data:

```{r, echo = FALSE}
boxplot(Ozone ~ Month, data = airquality)
```

This is what the output looks like:

216

7.1. A quick history of literate programming

Figure 7.4.: It’s very close to the Sweave output.

Just like in a Sweave document, an Rmd source file also has a
header in which authors can define a number of general options.
Here I’ve only specified that I wanted a pdf document as an
output file. I then copy and pasted the contents from the Sweave
source, but changed the chunk delimiters from <<>>= and @ to
```{r} to start an R chunk and ``` to end it. Remember;
we need to specify the engine in the chunk because {knitr}
supports many engines. For example, it is possible to run a

217



7. Literate programming

bash command by adding this chunk to the source:

---
output: pdf_document
---

In this example we embed parts of the examples
from the↪

\texttt{kruskal.test} help page into a LaTeX
document:↪

```{r}
data (airquality)
kruskal.test(Ozone ~ Month, data = airquality)
```

which shows that the location parameter of the
Ozone↪

distribution varies significantly from month to
month.↪

Finally we include a boxplot of the data:

```{r, echo = FALSE}
boxplot(Ozone ~ Month, data = airquality)
```

```{bash}
pwd
```

(bash’s pwd command shows the current working directory). You
may have noticed that I’ve also keep two LaTeX commands in
the source Rmd, \texttt{} and LaTeX. This is because Rmd

218



7.1. A quick history of literate programming

files get first converted into LaTeX files and then into a PDF. If
you’re using RStudio, this document can be compiled by clicking
a button or using a keyboard shortcut, but you can also use the
rmarkdown::render() function. This function does two things
transparently: it first converts the Rmd file into a source LaTeX
file, and then converts it into a PDF. It is of course possible to
convert the document to a Word document as well, but in this
case, LaTeX commands will be ignored. Html is another widely
used output format.

If you’re a researcher and prefer working with LaTeX directly
instead of having to switch to Markdown, you can either use
Sweave, or use {knitr} but instead of writing your documents
using the R Markdown format, you can use the Rnw format which
is basically the same as Sweave, but uses {knitr} for compila-
tion. Take a look at this example1 from the {knitr} Github
repository for example.

You should know that {knitr} makes it possible to author many,
many different types of documents. It is possible to write books,
blogs, package documentation (and even entire packages, as we
shall see later in this book), Powerpoint slides… It is extremely
powerful because we can use the same general R Markdown
knowledge to build many different outputs.

1https://is.gd/Z7VS09

219

https://github.com/yihui/knitr/blob/master/inst/examples/knitr-minimal.Rnw


7. Literate programming

Figure 7.5.: One format to rule them all.

Finally, the latest in literate programming for R is a new tool
developed by Posit, called Quarto. If you’re an R user and al-
ready know {knitr} and the Rmd format, you should be able
to immediately use Quarto. So what’s the difference? In prac-
tice and for R users not much but there are some things that
Quarto is able to do out of the box for which you’d need exten-
sions with {knitr}. Quarto has some nice defaults; in fact, this
book is written in Quarto’s Markdown flavour and compiled with
Quarto instead of {knitr} because the default Quarto output
looks nicer than the default {knitr} output. However, there
may even be things that Quarto can’t do at all (at least for
now) when compared to {knitr}. So why bother switching?
Well, Quarto provides sane defaults and some nice features out
of the box, and the cost of switching from the Rmd format to
Quarto’s Qmd format is basically 0. Also, and this is probably

220



7.1. A quick history of literate programming

the biggest reason to use Quarto, Quarto is not tied to R. Quarto
is actually a standalone tool that needs to be installed alongside
your R installation, and works completely independently. In
fact, you can use Quarto without having R installed at all, as
Quarto, just like {knitr} supports many engines. This means
that if you’re primarily using Python, you can use Quarto to
author documents that mix Python chunks and prose. Quarto
also supports the Julia programming language and Observable
JS, making it possible to include interactive visualisations into
an Html document. Let’s take a look at how the example from
Leisch’s paper looks as a Qmd (Quarto’s flavour of Markdown)
file:

---
output: pdf
---

In this example we embed parts of the examples
from the↪

\texttt{kruskal.test} help page into a LaTeX
document:↪

```{r}
data (airquality)
kruskal.test(Ozone ~ Month, data = airquality)
```

which shows that the location parameter of the
Ozone↪

221



7. Literate programming

distribution varies significantly from month to
month.↪

Finally we include a boxplot of the data:

```{r, echo = FALSE}
boxplot(Ozone ~ Month, data = airquality)
```

(I’ve omitted the bash chunk from before, not because Quarto
does not support it, but to keep close to the original example
from the paper.)

As you can see, it’s exactly the same as the Rmd file from before.
The only difference is in the header. In the Rmd file I specified
the output format as:

---
output: pdf_document
---

whereas in the Qmd file we changed it to:

---
output: pdf
---

222



7.1. A quick history of literate programming

While Quarto is the latest option in literate programming, it is
quite recent, and as such, I feel it might be better to stick with
{knitr} and the Rmd format for now, so that’s what we’re going
to use going forward. Also, the {knitr} and the Rmd format
are here to stay, so there’s little risk in keeping using it, and
anyways, as already stated, if switching to Quarto becomes a
necessity, the cost of switching would be very, very low. In what
follows, I won’t be focused on anything really {knitr} or Rmd
specific, so should you want to use Quarto instead, you should be
able to follow along without any problems at all, since the Rmd
and Qmd formats have so much overlap. Also, Quarto needs to
be installed separately, but to use {knitr} and RMarkdown, no
specific tools are necessary.

In the next two sections, I will show you how to set up and use
{knitr} as well as give you a quick overview of the R Markdown
syntax. However, we will very quickly focus on the templating
capabilities of {knitr}: expanding text, using child documents,
and parameterised reports. These are advanced topics and not
easy to tackle if you’re not comfortable with R already. Just as
functions and higher-order functions like lapply() avoid having
to repeat yourself, so does templating, but for literate program-
ming. The goal is to write functions that return literal R Mark-
down code, so that you can loop over these functions to build
entire sections of your documents. However, the learning curve
for these features is quite steep, but by now, you should have
noticed that this book expects a lot from you. Keep going, and
you shall be handsomely rewarded.

223



7. Literate programming

7.2. {knitr} basics

This section will be a very small intro to {knitr}. I’m going to
teach you just enough to get started writing Rmd files. Most,
if not all, of what I’ll be explaining here is also applicable to
the Qmd format. There are many resources out there that you
can use if you want to dig deeper, for instance the R Markdown
website2 from Posit, or the R Markdown: The Definitive Guide3

and R Markdown Cookbook4 eBooks. I will also not assume that
you are using the RStudio IDE and give you instead the lower
level commands to render documents. If you use RStudio and
want to know how to use it effectively to author Rmd documents,
you should take a look at this5 page. In fact, this section will
basically focus on the same topics, but without RStudio.

7.2.1. Set up

The first step is to install the {knitr} and the {rmarkdown}
packages. That’s easy, just type:

install.packages("rmarkdown")

in an R console. Since {knitr} is required to install
{rmarkdown}, it gets installed automatically. If you want
to compile PDF documents, you should also have a working
LaTeX distribution. You can skip this next part if you’re
only interested in generating Html and Word files. For what
follows in the book, we will only be rendering Html documents,

2https://rmarkdown.rstudio.com/lesson-1.html
3https://bookdown.org/yihui/rmarkdown/
4https://bookdown.org/yihui/rmarkdown-cookbook/
5https://rmarkdown.rstudio.com/authoring_quick_tour.html

224

https://rmarkdown.rstudio.com/lesson-1.html
https://rmarkdown.rstudio.com/lesson-1.html
https://bookdown.org/yihui/rmarkdown/
https://bookdown.org/yihui/rmarkdown-cookbook/
https://rmarkdown.rstudio.com/authoring_quick_tour.html


7.2. {knitr} basics

so no need to install LaTeX (by the way, you don’t even
need a working Word installation to compile documents to
the docx format). However, if you already have a working
LaTeX installation, you shouldn’t have to do anything else to
generate PDF documents. If you don’t have a working LaTeX
distribution, then Yihui Xie, the creator of {knitr} created
an R package called {tinytex} which you can use to install a
working LaTeX distribution very easily. In fact, this is the way
I recommend installing LaTeX even if you’re not an R user (it
is possible to use the tinytex distribution without R; it’s just
that the {tinytex} R package provides many functions that
makes installing and maintaining it very easy). Simply run
these commands in an R console to get started:

install.packages("tinytex")
tinytex::install_tinytex()

and that’s it! If you need to install specific LaTeX packages,
then refer to the Maintenance section on tinytex’s6 website.
For example, to compile the example from Leisch’s article on
Sweave discussed previously, the grfext LaTeX package needs
to be installed (as explained by the error output in the console
when I tried compiling). To install this package, you can use
the tlmgr_install() function from {tinytex}:

tlmgr_install("grfext")

After you’ve installed {knitr}, {rmarkdown} and, optionally,
{tinytex}, simply try to compile the following document:

6https://yihui.org/tinytex/#maintenance

225

https://yihui.org/tinytex/#maintenance


7. Literate programming

---
output: html_document
---

# Document title

## Section title

### Subsection title

This is **bold** text. This is *text in
italics*.↪

My favourite programming language for statistics
is ~~SAS~~ R.↪

save this document into a file called rmd_test.rmd using your
favourite text editor. Then render it into an Html file by running
the following command in the R console:

rmarkdown::render("path/to/rmd_test.rmd")

This should create a file called rmd_test.html; open it with
your web browser and you should see the following:

226



7.2. {knitr} basics

Figure 7.6.: This is how formatting looks like, once the docu-
ment is compiled.

Congratulations, you just knitted your first Rmd document!

7.2.2. Markdown ultrabasics

R Markdown is a flavour of Markdown, which means that you
should know some Markdown to really take full advantage of
R Markdown. The example document from before should have
already shown you some basics: titles, sections and subsections
all start with a # and the depth level is determined by the num-
ber of #s. For bold text, simply put the words in between **
and for italics use only one *. If you want bold and italics,
use ***. The original designer of Markdown did not think that
underlining text was important, so there is no easy way of doing
it, unfortunately. For this, you need to use a somewhat hid-
den feature; without going into too many technical details, the

227



7. Literate programming

program that converts Rmd files to the final output format is
called Pandoc, and it’s possible to use some of Pandoc’s features
to format text. For example, for underlining:

[This is some underlined text in a R Markdown
document]{.underline}↪

This will underline the text between square brackets.7

The next step is to mix code and prose. As you’ve seen from
Leisch’s canonical example, this is quite easily achieved by using
R code chunks. The R Markdown example below shows various
code chunks alongside some options. For example, a code chunk
that uses the echo = FALSE option will not appear (but the
output of the computation will):

---
title: "Document title"
output: html_document
date: "2023-01-28"
---

# R code chunks

This below is an R code chunk:

```{r}
data(mtcars)

plot(mtcars)
```

7https://stackoverflow.com/a/68690065/1298051

228



7.2. {knitr} basics

The code chunk above will appear in the final
output.↪

The code chunk below will be hidden:

```{r, echo = FALSE}
data(iris)

plot(iris)
```

This next code chunk will not be evaluated:

```{r, eval = FALSE}
data(titanic)

str(titanic)
```

The last one below runs, but code and output
from the code is↪

not shown in the final document. This is useful
for loading↪

229



7. Literate programming

libraries and hiding startup messages:

```{r, include = FALSE}
library(dplyr)
```

If you use RStudio and create a new R Markdown file from the
menu, a template R Markdown file is generated for you to fill
out. The first R chunk is this one:

```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```

This is an R chunk named setup with the option include =
FALSE (so neither the chunk itself, nor the output it produces
will be shown in the compiled document). Naming chunks is
optional, but we are going to make use of this later on. The
code that runs in this chunk defines a global option to show the
source code from all the chunks by default (which is the default
behaviour). You can change TRUE to FALSE if you want to hide
every code chunk instead (if you’re using Quarto, global options
are set differently8).

Something else you might have noticed in the previous example,
is that we’ve added some more content in the header:

---
title: "Document title"
output: html_document
date: "2023-01-28"

8https://quarto.org/docs/computations/execution-options.html

230

https://quarto.org/docs/computations/execution-options.html


7.2. {knitr} basics

---

There are several other options available that you can define in
the header. Later on, I will show you some more options, for
example how to define a table of contents.

To finish this part on code chunks, you should know about inline
code chunks. Take a look at the following example:

---
title: "Document title"
output: html_document
date: "2023-01-28"
---

# R code chunks

```{r, echo = FALSE}
data(iris)
```

The iris dataset has `r nrow(iris)` rows.

The last sentence from this example has an inline code chunk.
This is quite useful, as it allows to parameterise sentences and
paragraphs, and thus avoids needing to copy and paste (and we
will go quite far into how to avoid copy and pasting, thanks to
more advanced features we will shortly discuss).

To finish this crash course, you should know that to use footnotes
you need to write the following:

231



7. Literate programming

This sentence has a footnote.[^1]

[^1]: This is the footnote.

or the following (which I prefer):

This sentence has a footnote.^[This is the
footnote]↪

and that you can write LaTeX formulas as well. For example,
add the lines below into the example from before and render
either a PDF or an HTML document (don’t put the LaTeX
formula below inside a chunk, simply paste it as if it were normal
text. This doesn’t work for Word output because Word does not
support LaTeX equations):

\begin{align*}
S(\omega)
&= \frac{\alpha g^2}{\omega^5}
e^{[ -0.74\bigl\{\frac{\omega U_\omega
19.5}{g}\bigr\}
^{\!-4}\,]} \\

&= \frac{\alpha g^2}{\omega^5}
\exp\Bigl[ -0.74\Bigl\{\frac{\omega U_\omega
19.5}{g}\Bigr\}
^{\!-4}\,\Bigr]

\end{align*}

The LaTeX code above results in this equation:

232



7.3. Keeping it DRY

Figure 7.7.: A rendered LaTeX equation.

7.3. Keeping it DRY

Remember; we never, ever, want to have to repeat ourselves.
Copy and pasting is forbidden. Striving for 0 copy and pasting
will make our code much more robust and likely to be correct.

To keep DRY, we started by using functions, as discussed in the
previous chapter, but we can go much further than that. For
example, suppose that we need to write a document that has
the following structure:

• A title
• A section
• A table inside this section
• Another section
• Another table inside this section
• Yet another section
• Yet another table inside this section

Is there a way to automate the creation of such a document by
taking advantage of the repeating structure? Of course there is.
The question is not, is it possible to do X?, but how to do X?.

233



7. Literate programming

7.3.1. Generating R Markdown code from code

The example below is a fully working minimal example
of this. Copy it inside a document titled something like
rmd_templating.Rmd and render it. You will see that the
output contains more sections than defined in the source. This
is because we use templating at the end. Take some time to
read the document, as the text inside explains what is going
on:

---
title: "Templating"
output: html_document
date: "2023-01-27"
---

```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```

## A function that creates tables

```{r}
create_table <- function(dataset, var){

table(dataset[var]) |>
knitr::kable()

}
```

234



7.3. Keeping it DRY

The function above uses the `table()` function
to create↪

frequency tables, and then this gets passed to
the↪

`knitr::kable()` function that produces a good
looking table↪

for our rendered document:

```{r}
create_table(mtcars, "am")
```

Let’s suppose that we want to generate a
document that would↪

look like this:

- first a section title, with the name of the
variable of interest↪

- then the table

So it would look like this:

## Frequency table for variable: "am"

```{r}
create_table(mtcars, "am")

235

7. Literate programming

```

We don’t want to create these sections for
every variable by hand.

Instead, we can define a function that
returns the R markdown code required to
create this. This is this function:

```{r}
return_section <- function(dataset, var){

a <- knitr::knit_expand(text = c(
"## Frequency table for variable:

{{variable}}",↪

create_table(dataset, var)),
variable = var)

cat(a, sep = "\n")
}
```

This new function, `return_section()` uses
`knitr::knit_expand()` to generate RMarkdown
code. Words between `{{}}` get replaced by
the provided `var` argument to the function.
So when we call `return_section("am")`,
`{{variable}}` is replaced by `"am"`. `"am"`

236



7.3. Keeping it DRY

then gets passed down to `create_table()`
and the frequency table gets generated.
We can now generate all the section by simply
applying our function to a list of column names:

```{r, results = "asis"}
invisible(lapply(colnames(mtcars),

return_section, dataset = mtcars))↪

```

The last function, named return_section() uses knit_expand(),
which is the function that does the heavy lifting. This function
returns literal R Markdown code. It returns ## Frequency
table for variable: {{variable}} which creates a level
2 section title with the text Frequency table for variable:
xxx where the xxx will get replaced by the variable passed
to return_section(). So calling return_section(mtcars,
"am") will print the following in your console:

## Frequency table for variable: am
am	Freq
0	19
1	13

We now simply need to find a clever way to apply this function
to each variable in the mtcars dataset. For this, we are going
to use lapply() which implements a for loop (you could use
purrr::map() just as well for this):

invisible(lapply(colnames(mtcars),
return_section,
dataset = mtcars))

237



7. Literate programming

This will create, for each variable in mtcars, the same R
Markdown code as above. Notice that the R Markdown chunk
where the call to lapply() is has the option results = "asis".
This is because the function returns literal Markdown code, and
we don’t want the parser to have to parse it again. We tell the
parser “don’t worry about this bit of code, it’s already good”.
As you see, the call to lapply() is wrapped inside invisible().
This is because return_section() does not return anything,
it just prints something to the console. No object is returned.
return_section() is a function with only a side-effect: it
changes something outside its scope. So if you don’t wrap the
call to lapply() inside invisible(), then a bunch of NULLs
will also get printed (NULLs get returned by functions that don’t
return anything). To avoid this, use invisible() (and use
purrr::walk() rather than purrr::map() if you want to use
tidyverse packages and functions).

See the output here9.

This is not an easy topic, so take the time to play around
with the example above. Try to print another table, try to
generate more complex Markdown code, remove the call to
invisible() and knit the document and see what happens with
the output, replace the call to lapply() with purrr::walk()
or purrr::map(). Really take the time to understand what is
going on.

While extremely powerful, this approach using knit_expand()
only works if your template only contains text. If you need to
print something more complicated in the document, you need to
use child documents instead. For example, suppose that instead
of a table we wanted to show a plot made using {ggplot2}.
This would not work, because a ggplot object is not made of

9https://is.gd/EzdUtt

238

https://jolly-arithmetic-ce29cf.netlify.app/


7.3. Keeping it DRY

text, but is a list with many elements. The print() method
for ggplot objects then does some magic and prints a plot. But
if you want to show plots using knitr::knit_expand(), then
the contents of the list will be shown, not the plot itself. This
is where child documents come in. Child documents are exactly
what you think they are: they’re smaller documents that get
knitted and then embedded into the parent document. You can
define anything within these child documents, and as such you
can even use them to print more complex objects, like a ggplot
object. Let’s go back to the example from before and make use
of a child document (for ease of presentation, we will not use a
separate Rmd file, but will inline the child document into the
main document). Read the Rmd example below carefully, as all
the steps are explained:

---
title: "Templating with child documents"
output: html_document
date: "2023-01-27"
---

```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(ggplot2)
```

## A function that creates ggplots

```{r}
create_plot <- function(dataset, aesthetic){

ggplot(dataset) +

239

7. Literate programming

geom_point(aesthetic)

}
```

The function above takes a dataset and an
aesthetic↪

made using `ggplot2::aes()` to create a plot:

```{r}
create_plot(mtcars, aes(y = mpg, x = hp))
```

Let’s suppose that we want to generate a
document↪

that would look like this:

- first a section title, with the dataset used;
- then a plot

So it would look like this:

## Dataset used: "mtcars"

```{r}
create_plot(mtcars, aes(y = mpg, x = hp))
```

We don’t want to create these sections for every
↪

aesthetic by hand.

240



7.3. Keeping it DRY

Instead, we can make use of a child document
that↪

gets knitted separately and then embedded in the
↪

parent document. The chunk below makes use of
this trick:↪

```{r, results = "asis"}

x <- list(aes(y = mpg, x = hp),
aes(y = mpg, x = hp, size = am))

res <- lapply(x,
function(dataset, x){

knitr::knit_child(text = c(

'\n',
'## Dataset used: `r
deparse(substitute(dataset))`',↪

'\n',
'```{r, echo = F}',
'print(create_plot(dataset, x))',
'```'

),
envir = environment(),
quiet = TRUE)

}, dataset = mtcars)

241

7. Literate programming

cat(unlist(res), sep = "\n")
```

The child document is the `text` argument to the
↪

`knit_child()` function. `text` is literal R
Markdown↪

code: we define a level 2 header, and then an R
chunk.↪

This child document gets knitted, so we need to
specify↪

the environment in which it should get knitted.
This means↪

that the child document will get knitted in the
same↪

environment as the parent document (our current
global↪

environment). This way, every package that gets
loaded↪

and every function or variable that got defined
in the↪

parent document will also be available to the
child document.↪

To get the dataset name as a string, we use the
`deparse(substitute(dataset))` trick; this

substitutes↪

"dataset" by its bound value, so `mtcars`. But
`mtcars` is↪

an expression and we don’t want it to get
evaluated, or the↪

242



7.3. Keeping it DRY

contents of the entire dataset would be used in
the title↪

of the section. So we use `deparse()` which
turns unevaluated↪

expressions into strings.

We then use `lapply()` to loop over two
aesthetics with an↪

anonymous function that encapsulates the child
document. So we↪

get two child documents that get knitted, one
per aesthetic.↪

This gets saved into variable `res`. This is
thus a list of↪

knitted Markdown.

Finally, we need unlist `res` to actually merge
the Markdown↪

code from the child documents into the parent
document.↪

See the output here10.

Here again, take some time to play with the above example.
Change the child document, try to print other types of output,
really take your time to understand this. To know more about
child documents, take a look at this section11 of the R Markdown
Cookbook (Xie, Dervieux, and Riederer 2020).

By the way, if you wish to add a table of contents to your doc-
ument, change the header to this:

10https://is.gd/aR2hyz
11https://is.gd/gAqzf9

243

https://fastidious-bavarois-3b17b9.netlify.app/
https://bookdown.org/yihui/rmarkdown-cookbook/child-document.html#child-document


7. Literate programming

---
title: "Templating with child documents and TOC"
output:

html_document:
toc: true
toc_float: true

date: "2023-01-27"
---

7.3.2. Tables in R Markdown documents

Getting tables right in Rmd documents is not always an easy
task. There are several packages specifically made just for this
task, and the package that I recommend tick the following two
important boxes:

• Work the same way regardless of output format (Word,
PDF or Html);

• Work for any type of table: summary tables, regression
tables, two-way tables, etc.

Let’s start with the simplest type of table, which would be a
table that simply shows some rows of data. {knitr} comes
with the kable() function, but this function generates a very
plain looking output. For something publication-worthy, we rec-
ommend the {flextable} package, developed by Gohel and
Skintzos (2023):

library(flextable)

my_table <- head(mtcars)

244



7.3. Keeping it DRY

flextable(my_table) |>
set_caption(caption = "Head of the mtcars

dataset") |>↪

theme_booktabs()

Figure 7.8.: The output of the code above.

Note that the example above will work pretty much the same
way for any table that you can coerce into a data frame! I
won’t explain how {flextable} works, but it is very powerful,
and the fact that it works for PDF, Html, Word and Powerpoint
outputs is really a massive plus. If you want to learn more about
{flextable}, there’s a whole, free, ebook on it12. {flextable}
can create very complicated tables, so really take the time to
dig in!

The next package is {modelsummary}, by Arel-Bundock (2022),
and this one focuses on regression and summary tables. It is
extremely powerful as well, and just like {flextable}, works
for any type of output. It is very simple to get started:

12https://ardata-fr.github.io/flextable-book/index.html

245

https://ardata-fr.github.io/flextable-book/index.html


7. Literate programming

library(modelsummary)

model_1 <- lm(mpg ~ hp + am, data = mtcars)
model_2 <- lm(mpg ~ hp, data = mtcars)

models <- list("Model 1" = model_1,
"Model 2" = model_2)

modelsummary(models)

Figure 7.9.: Estimated models are shown side by side.

Here again, I won’t got into much detail, but recommend instead
that you read the package’s website13 which has very detailed
documentation.

These packages can help you keeping it DRY, so take some time
13https://is.gd/pjIKmV

246

https://vincentarelbundock.github.io/modelsummary/articles/modelsummary.html


7.3. Keeping it DRY

to learn them.

And one last thing: if you’re a researcher, take a look at the
{rticles}14 package, which provides Rmd templates to write
articles for many scientific journals.

7.3.3. Parametrized reports

Templating and child documents are very powerful, but some-
times you don’t want to have one section dedicated to each unit
of analysis within the same report, but rather, you want a com-
plete separate report by unit of analysis. This is possible thanks
to parameterised reports.

Let’s change the example from before, which consisted of creat-
ing one section per column of the mtcars dataset and a frequency
table, and make it now one separate report for each column. The
R Markdown file will look like this:

---
title: "Report for column `r params$var` of

dataset `r params$dataset`"↪

output: html_document
date: "2023-01-27"
params:

dataset: mtcars
var: "am"

---

```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)

14https://pkgs.rstudio.com/rticles/articles/examples.html

247

https://pkgs.rstudio.com/rticles/articles/examples.html

7. Literate programming

```

## Frequency table for `r params$var`

```{r, echo = F}
create_table <- function(dataset, var){

dataset <- get(dataset)

table(dataset[var]) |>
knitr::kable()

}
```

The table below is for variable `r params$var`
of↪

dataset `r params$dataset`.

```{r}
create_table(params$dataset, params$var)
```

```{r, eval = FALSE, echo = FALSE}
Run these lines to compile the document
Set eval and echo to FALSE, so that this does

not appear↪

248

7.3. Keeping it DRY

in the output, and does not get evaluated when
knitting↪

rmarkdown::render(
input = "param_report_example.Rmd",
params = list(
dataset = "mtcars",
var = "cyl"

)
)

```

Save the code above into an Rmd file titled something like
param_report_example.Rmd (preferably inside its own folder).
Note that at the end of the document, I wrote the lines to ren-
der this document inside a chunk that does not get shown to the
reader, nor gets evaluated:

```{r, eval = F, echo = FALSE}
rmarkdown::render(

input = "param_report_example.Rmd",
params = list(
dataset = "mtcars",
var = "cyl"

)
)

```

You need to run these lines yourself to knit the document.

This will pass the list params with elements “mtcars” and “cyl”
down to the report. Every params$dataset and params$var
in the report gets replaced by “mtcars” and “cyl” respectively.

249



7. Literate programming

Also, notice that in the header of the document, I defined default
values for the params. Something else you need to be aware of,
is that the function create_table() inside the report is slightly
different than before. It now starts with the following line:

dataset <- get(dataset)

Let’s break this down. params$dataset contains the string “mt-
cars”. I made the decision to pass the dataset as a string, so that
I could use it in the title of the document. But then, inside the
create_table() function, I have the following code:

dataset[var]

dataset can’t be a string here, but needs to be a variable name,
so mtcars and not "mtcars". This means that I need to convert
that string into a name. get() searches an object by name, and
then makes it possible to save it to a new variable called dataset.
The rest of the function is then the same as before. This little
difficulty can be avoided by hard-coding the dataset inside the R
Markdown file, or by passing the dataset as the params$dataset
and not the string, in the render function. However, if you
pass down the name of the dataset as a variable instead of the
dataset name as a string, then you need to covert it to a string
if you want to use it in the text (so mtcars to "mtcars", using
deparse(substitute(dataset)) as in child documents exam-
ple).

If you instead want to create one report per variable, you could
compile all the documents at once with:

```{r, eval = F, echo = F}
columns <- colnames(mtcars)

250

7.3. Keeping it DRY

lapply(columns,
(\(x)rmarkdown::render(

input =
"param_report_example.Rmd",↪

output_file = paste0(
"param_report_example_",

x, ".html"↪

),
params = list(
dataset = "mtcars",
var = x

)
)

)
)
```

By now, this should not intimidate you anymore; I use
lapply() to loop over a list of column names (that I get using
colnames()). Because I don’t want to overwrite the report I
need to change the name of the output file. I do so by using
paste0() which creates a new string that contains the variable
name, so each report gets its own name. x inside the paste0()
function is each element, one after the other, of the columns
variable I defined first. Think of it as the i in a for loop. I
then must also pass this to the params list, hence the var = x.
The complete call to rmarkdown::render() is wrapped inside
an anonymous function, because I need to use the argument x
(which is each column defined in the columns list) in different
places.

251



7. Literate programming

7.4. Conclusion

Before continuing, I highly recommend that you try running this
yourself, and also that you try to build your own little param-
eterised reports. Maybe start by replacing “mtcars” by “iris”
in the code to compile the reports and see what happens, and
then when you’re comfortable with parameterised reports, try
templating inside a parameterised report!

It is important not to succumb to the temptation of copy and
pasting sections of your report, or parts of your script, instead
of using these more advanced features provided by the language.
It is tempting, especially under time pressure, to just copy and
paste bits of code and get things done instead of writing what
seems to be unnecessary code to finally achieve the same thing.
The problem, however, is that in practice copy and pasting code
to simply get things done will come bite you sooner rather than
later. Especially when you’re still in the exploration/drafting
phase of the project. It may take more time to set up, but once
you’re done, it is much easier to experiment with different pa-
rameters, test the code or even re-use the code for other projects.
Not only that but forcing you to actually think about how to set
up your code in a way that avoids repeating yourself also helps
with truly understanding the problem at hand. What part of the
problem is constant and does not change? What does change?
How often, and why? Can you also fix these parts or not? What
if instead of five sections that I need to copy and paste, I had
50 sections? How would I handle this?

Asking yourself these questions, and solving them, will ulti-
mately make you a better programmer.

Remember: don’t repeat yourself!

252



8. Conclusion of part 1

We’re at the end of part 1, and I need to congratulate you for
making it this far. If you took the time to digest what we’ve
learned up until now, you should be ready for what’s coming,
which should be a bit easier, at least some of the parts.

But before continuing, let’s quickly summarise what we’ve
learned so far.

We started our journey with two scripts that download and anal-
yse data about housing in Luxembourg. We then learned about
tools and programming paradigms that we will now use in part
2 to make our scripts more robust:

• Version control;
• Functional programming;
• Literate programming.

In some ways, you might think that we’ve made our life unnec-
essarily complicated for very little gain. For example, functional
programming seems to be only about putting restrictions on how
you code. Same with using trunk-based development; why make
it so restrictive?

What you need to understand is that these restrictions actually
play a role. They force us to work in a much more structured
way, which then ensures that our projects will be well-managed
and ultimately reproducible. So while these techniques come
with a cost, the benefits are far greater.

253



8. Conclusion of part 1

We will start part 2 by rewriting our scripts using what we’ve
learned, and then, we will think about approaching the core
problem differently, and structuring our project not as a series of
scripts (or R Markdown files in the case of literate programming)
but instead as a pipeline. Because until now, there’s still no
pipeline and let me remind you that this book has the word
“pipeline” in its title.

We will also learn about tools that capture the computational
environment that was used to set up this pipeline and how to use
them effectively to make sure that our project is reproducible.

254



Part II.

Part 2: Write IT down

255





The reproducibility iceberg

In this part of the book, we are now going to focus on the sec-
ond main idea of this book: Write IT down. We now need to
acknowledge that our brains are fallible (and ageing) and thus
we need to write down many safeguards to ensure that our anal-
yses can be of high quality.

We cannot leave code quality, documentation and finally its re-
producibility to chance. We need to write down everything we
need to ensure the long-term reproducibility of our pipelines.

The reproducibility iceberg

I think it is time to reflect on why I bothered with the first part
of the book at all, because for now, I didn’t really teach you
anything directly related to reproducibility, so why didn’t I just
jump straight to the reproducibility part?

Remember the introduction, where I talked about the repro-
ducibility continuum or spectrum? It is now time to discuss
this in greater detail. I propose a new analogy, the reproducibil-
ity iceberg:

257



Figure 8.1.: The reproducibility iceberg.

Why an iceberg? Because the parts of the iceberg that you
see, those that are obvious, are like running your analyses in
a click-based environment like Excel. This is what’s obvious,
what’s easy. No special knowledge or even training is required.
All that’s required is time, so people using these tools are not
efficient and thus compensate by working insane hours (I can’t
go home and enjoy time with my family I have to stay at the
office and update the spreadsheeeeeeeeet clicks furiously).

258



The reproducibility iceberg

Let’s go one level deeper: let’s write a script. This is where we
started. Our script was not too bad, it did the job. Unlike a click-
based workflow, we could at least re-read it, someone else could
read it, and it would be possible to run in the future but likely
with some effort unless we’re lucky. By that, I mean that for
such a script to run successfully in the future, that script cannot
rely on packages that got updated in such a way that the script
cannot run anymore (for example, if functions get renamed, or
if their arguments get renamed). Furthermore, if that script
relies on a data source, the original authors also have to make
sure that the same data source stays available. Another issue
is collaborating when writing this script. Without any version
control tools nor code hosting platform, collaborating on this
script can very quickly turn into a nightmare.

This is where Git and Github.com came into play, one level
deeper. The advantage now is that collaboration was stream-
lined. The commit history is available to all the teammates and
it is possible to revert changes, experiment with new features
using branches and overall manage the project. In this layer we
also employ new programming paradigms to make the code of
the project less verbose, using functional programming, with the
added benefits of making it easier to test, document and share
(which we will discuss to its fullest in this part of the book). Us-
ing literate programming, it is also much easier to go to our final
output (which is usually a report). We implemented DRY ideas
to the fullest to ensure that our code was of high quality.

At this depth, we are at a pivotal moment: in many cases, an-
alysts may want to stop here because there is no more time
or budget left. After all, the results were obtained and shared
with higher-ups. It can be difficult, in some contexts, to justify
spending more time to go deeper and write tests, documentation
and otherwise ensure total reproducibility. So at this stage, we

259



will see what we can do that is very cheap (in both time and
effort) to ensure the minimal amount of reproducibility, which
is recording packages versions. Recording packages means that
the exact same versions of the packages that were used origi-
nally will get used regardless of when in the future we rerun the
analysis.

But if budget and time allow we can still go deeper, and defi-
nitely should. One day, you will want to update your script to
use the newest functionality of your preferred package, but with
package version recording, you will be stuck in the past with
a very old version and its dependencies. How will you know
that upgrading this package will not break anything anywhere
in your workflow? Also, we want to make running the script
as easy as possible, and ideally, as non-interactively as possible.
Indeed, any human interaction with the analysis is a source of er-
rors. That’s why we need to thoroughly and systematically test
our code. These tests also need to run non-interactively. Using
the tools described in part two of this book, we can actually set
up the project, right from the very beginning, in a way that it
will be reproducible quite naturally. By using the right tools
and setting things up right, we don’t really need to invest more
time to make things reproducible. The project will simply be
reproducible because it was engineered that way. And I insist,
at practically no additional cost!

Another problem with only recording packages’s version is that
in practice, it is very often not enough. This is because installing
older versions of packages can be a challenge. This can be the
case for two reasons:

• These older packages need also an older version of R, and
installing old versions of R can be tricky, depending on
your operating system;

260



The reproducibility iceberg

• These older packages might need to get compiled and thus
depend themselves on older versions of development li-
braries needed for compilation.

So to solve this issue, we will also need a way to freeze the
computational environment itself, and this is where we will use
Docker.

Finally, and this is the last level of the iceberg and not part of
this book, is the need to make the building of the computational
environment reproducible as well. Guix is the tool that enables
one to do just that. However, this is a very deep topic unto
itself, and there are workarounds to achieve this using Docker,
so that’s why we will not be discussing Guix.

We will travel down the iceberg in the coming chapters. First, we
will use what we’ve learned up until now to rewrite our project
using functional and literate programming. Our project will not
be two scripts anymore, but two Rmarkdown files that we can
knit and that we can then read and also send to non-technical
stakeholders.

Then, we are going to turn these two Rmds files into a pack-
age. This will be done by using Sébastien Rochette’s package
{fusen}1. {fusen} makes it very easy to go from our Rmd files
to a package, by using what Sébastien named the Rmarkdown
first method. If at this stage it’s not clear why you would want
to turn your analysis into a package, don’t worry, it’ll be once
we’re done with this chapter.

Once we have a package, we can use {testthat} for unit test-
ing, and base R functions for assertive programming. At this
stage, our code should be well-documented, easy to share, and
thoroughly tested.

1https://thinkr-open.github.io/fusen/

261

https://thinkr-open.github.io/fusen/
https://thinkr-open.github.io/fusen/


I think I should emphasize the following: I started from very sim-
ple scripts, which is how most analyses are done. Then, using
functional and literate programming, these scripts got turned
into RMarkdown files, and in this part of the book these RMark-
down files will get turned into a package. It is important to
understand the following point: I did this to illustrate how we
can go from these simple scripts to something more robust, step
by step. Of course, later, you can immediately start from ei-
ther the RMarkdown files or from the package. My advice is to
start from the package, because as you shall see, starting from
the package is basically the same amount of effort as starting
from a simple RMarkdown file, thanks to {fusen}, but now you
have the added benefits of using package development facilities
to improve your analysis.

Once you have the package, you can build a true pipeline using
{targets}, an incredibly useful library for build automation
(but if you prefer to keep it at simple RMarkdown files, you can
also use {targets}, you don’t have to build a package).

Once we reached this stage, this is when we can finally start
introducing reproducibility concretely. The reason it will take
so long to actually make our pipeline reproducible is that we
need solid foundations. There is no point in making a shaky
analysis reproducible.

262



9. Rewriting our project

In this chapter, we will use what we’ve learned until now to
rewrite our project. As a reminder, here are the scripts we wrote
together:

• save_data.R: https://is.gd/7PhUjd
• analysis.R: https://is.gd/X7XXJg

The analysis.R file already includes one change: the one from
the chapter on collaborating with Github, where Bruno wrote a
function to make the plots for each commune.

If you skipped part one of the book, or for any other reason do
not have a Github repository with these two files yet, then now is
the time to do so. Create a repository and name it housing_lux
or anything you’d like, and put these two files there. I will
assume that you have these files safely versioned, and will not
be telling you systematically when to commit and push. Simply
do so as often as you’d like! You should have a repository with
a master or main branch containing these two scripts. On your
computer, calling git status in Git Bash (on Windows) or in
a terminal (for Linux and macOS) should result in this:

owner@localhost $ git status

263

https://is.gd/7PhUjd
https://is.gd/X7XXJg


9. Rewriting our project

On branch master
nothing to commit, working tree clean

If that’s the case, congrats, we can start working. Start by
creating a new branch, and call it rmd:

owner@localhost $ git checkout -b rmd

Switched to a new branch 'rmd'

We will now be working on this branch, simply work as usual,
but when pushing, make sure to push to the rmd branch:

owner@localhost $ git add .
owner@localhost $ git commit -m "some changes"
owner@localhost $ git push origin rmd

This will push whatever changes you’ve made to files to the rmd
branch. By using two branches like this, you keep the original
.R scripts in the main branch, and then will end up with the
.Rmd files in the rmd branch.

Before moving forward now is the right moment to actually dis-
cuss why you would want to convert the script into Rmds. There
are several reasons. First, as argued in the chapter on literate
programming, a document that mixes prose and code is easier
to read and share than a script. Next, since this Rmd file can
get knitted into any type of document (PDF, Word, etc…), it
also makes it easier to arrive at what interests us, the output.
A script is simply a means, it’s not an end. The end is (in most
cases) a document so we might as well use literate programming
to avoid the cursed loop of changing the script, editing the doc-

264



9.1. An Rmd for cleaning the data

ument, going back to the script, etc.

But there is yet another benefit; even if the Rmd file is not
supposed to get shared with anyone else, we will, later on, use
it as our starting point for the Rmd first method of package
development as promoted by Sébastien Rochette, the author
of {fusen}. This Rmd first method involves making use of a
development Rmd file that contains all the usual steps that we
would take to create a package. This is in contrast with the
usual package development process, in which we would type the
required commands to build the package in the terminal. The
functions, tests, and documentation that we want to add to
the package get defined using Rmd files as well. This makes
them much easier to read and also share with a non-technical
audience. All these Rmd files can then be converted (or inflated
in {fusen} jargon) to create a fully working package. If this
sounds complicated or confusing, don’t worry. Trust the process,
push on, and all the pieces of the puzzle will elegantly fit together
in a couple of chapters.

In the following sections I will rewrite the scripts by using func-
tional and literate programming: if you don’t want to rewrite
everything, don’t worry, I link the final Rmd files at the end
of each section. But I would advise that you follow along by
writing everything as it will make absorbing the contents much
simpler.

9.1. An Rmd for cleaning the data

So, let’s start with the save_data.R script. Since we are going
to use functional programming and literate programming, we
are going to start from an empty .Rmd file. So open an empty
.Rmd file and start with the following lines:

265



9. Rewriting our project

---
title: "Nominal house prices data in Luxembourg

- Data cleaning"↪

author: "Put your name in here"
date: "`r Sys.Date()`"
---

```{r, warning=FALSE, message=FALSE}
library(dplyr)
library(ggplot2)
library(janitor)
library(purrr)
library(readxl)
library(rvest)
library(stringr)
```

## Downloading the data

We start by writing a header to define the title of the document,
the name of the author and the current date using inline R
code (you can also hardcode the date as a string if you prefer).
We then load packages in a chunk with options warning=FALSE
and message=FALSE which will avoid showing packages’ startup
messages in the knitted document.

Then we start with a new section called ## Downloading the
data. We then add a paragraph explaining from where and how
we are going to download the data:

266



9.1. An Rmd for cleaning the data

This data is downloaded from the Luxembourguish
[Open Data↪

Portal](https://data.public.lu/fr/datasets/
prix-annonces-des-logements-par-commune/)↪

(the data set called *Série rétrospective des
prix↪

annoncés des maisons par commune, de 2010 à
2021*),↪

and the original data is from the "Observatoire
de↪

l'habitat". This data contains prices for houses
sold↪

since 2010 for each luxembourguish commune.

The function below uses the permanent URL from
the Open Data↪

Portal to access the data, but I have also
rehosted the data,↪

and use my link to download the data (for
archival purposes):↪

This is much more detailed than using comments in a script, one
of the benefits of literate programming. Then comes a function
to download and get the data. This function simply wraps the
lines from our original script that did the downloading and the
cleaning. As a reminder, here are the lines from the original
script, which I will then rewrite as a function:

url <- "https://is.gd/1vvBAc"

raw_data <- tempfile(fileext = ".xlsx")

267



9. Rewriting our project

download.file(url, raw_data, method = "auto",
mode = "wb")↪

sheets <- excel_sheets(raw_data)

read_clean <- function(..., sheet){
read_excel(..., sheet = sheet) |>
mutate(year = sheet)

raw_data <- map(
sheets,
~read_clean(raw_data,

skip = 10,
sheet = .)

) |>
bind_rows() |>
clean_names()

raw_data <- raw_data |>
rename(

locality = commune,
n_offers = nombre_doffres,
average_price_nominal_euros =

prix_moyen_annonce_en_courant,↪

average_price_m2_nominal_euros =
prix_moyen_annonce_au_m2_en_courant,↪

average_price_m2_nominal_euros =
prix_moyen_annonce_au_m2_en_courant↪

) |>
mutate(locality = str_trim(locality)) |>
select(year, locality, n_offers,

starts_with("average"))↪

268



9.1. An Rmd for cleaning the data

}

and here is the same code, but as a function:

```{r, eval = FALSE}
get_raw_data <- function(url =

"https://is.gd/1vvBAc"){↪

raw_data <- tempfile(fileext = ".xlsx")

download.file(url,
raw_data,
mode = "wb")

sheets <- excel_sheets(raw_data)

read_clean <- function(..., sheet){
read_excel(..., sheet = sheet) %>%
mutate(year = sheet)

}

raw_data <- map_dfr(
sheets,
~read_clean(raw_data,

skip = 10,
sheet = .)) %>%

clean_names()

raw_data %>%
rename(
locality = commune,
n_offers = nombre_doffres,

269

9. Rewriting our project

average_price_nominal_euros =
prix_moyen_annonce_en_courant,↪

average_price_m2_nominal_euros =
prix_moyen_annonce_au_m2_en_courant,↪

average_price_m2_nominal_euros =
prix_moyen_annonce_au_m2_en_courant↪

) %>%
mutate(locality = str_trim(locality)) %>%
select(year, locality, n_offers,
starts_with("average"))↪

}
```

As you see, it’s almost exactly the same code. So why use a
function? Our function has the advantage that it uses the url of
the data as an argument. This means that we can use it on other
datasets (let’s remember that we are here focusing on prices of
houses, but there’s another dataset of prices of apartments) or
use it on an updated version of this dataset (which gets updated
yearly). We can now more easily re-use this function later on
(especially once we’ve turned this Rmd into a package in the
next chapter). You can decide to show the source code of the
function or hide it with the chunk option include=FALSE or
echo=FALSE (the difference between include and echo is that
include hides both the source code chunk and the output of that
chunk). Showing the source code in the output of your Rmd file
can be useful if you want to share it with other developers. The
next part of the Rmd file is simply using the function we just
wrote:

270



9.1. An Rmd for cleaning the data

```{r}
raw_data <- get_raw_data(url =

"https://is.gd/1vvBAc")↪

```

We can now continue by explaining what’s wrong with the data
and what cleaning steps need to be taken:

We need clean the data: "Luxembourg" is
"Luxembourg-ville" in 2010 and 2011,↪

then "Luxembourg". "Pétange" is also spelt
non-consistently, and we also need↪

to convert columns to the right type. We also
directly remove rows where the↪

locality contains information on the "Source":

```{r}
clean_raw_data <- function(raw_data){

raw_data %>%
mutate(locality =
ifelse(grepl("Luxembourg-Ville", locality),↪

"Luxembourg",
locality),

locality = ifelse(grepl("P.tange",
locality),↪

"Pétange",
locality)

) %>%
filter(!grepl("Source", locality)) %>%
mutate(across(starts_with("average"),
as.numeric))↪

}

271

9. Rewriting our project

```

```{r}
flat_data <- clean_raw_data(raw_data)
```

The chunk above explains what we’re doing and why we’re doing
it, and so we write a function (based on what we already wrote).
Here again, the advantage of having this as a function will make
it easier to run on updated data.

We now continue with establishing a list of communes:

We now need to make sure that we got all the
communes/localities↪

in there. There were mergers in 2011, 2015 and
2018. So we need↪

to account for these localities.

We’re now scraping data from Wikipedia of former
Luxembourguish communes:↪

```{r}
get_former_communes <- function(

url =
"https://is.gd/lux_former_communes",↪

min_year = 2009,
table_position = 3
){

read_html(url) %>%
html_table() %>%

272

9.1. An Rmd for cleaning the data

pluck(table_position) %>%
clean_names() %>%
filter(year_dissolved > min_year)

}

```

```{r}
former_communes <- get_former_communes()
```

We can scrape current communes:

```{r}
get_current_communes <- function(

url =
"https://is.gd/lux_communes",↪

table_position = 2
){

read_html(url) |>
html_table() |>
pluck(table_position) |>
clean_names() |>
filter(name_2 != "Name") |>
rename(commune = name_2) |>
mutate(commune = str_remove(commune, " .$"))

}

```

273



9. Rewriting our project

```{r}
current_communes <- get_current_communes()
```

This is quite a long chunk, but there is nothing new in here, so
I won’t explain it line by line. What’s important is that the
code doing the actual work is all being wrapped inside func-
tions. I reiterate: this will make reusing, testing and document-
ing much easier later on. Using the objects former_communes
and current_communes we can now build the complete list:

Let’s now create a list of all communes:

```{r}
get_test_communes <- function(former_communes,

current_communes){↪

communes <- unique(c(former_communes$name,
current_communes$commune))↪

we need to rename some communes

Different spelling of these communes between
wikipedia and the data↪

communes[which(communes == "Clemency")] <-
"Clémency"↪

communes[which(communes == "Redange")] <-
"Redange-sur-Attert"↪

communes[which(communes ==
"Erpeldange-sur-Sûre")] <- "Erpeldange"↪

communes[which(communes == "Luxembourg City")]
<- "Luxembourg"↪

274

9.1. An Rmd for cleaning the data

communes[which(communes == "Käerjeng")] <-
"Kaerjeng"↪

communes[which(communes == "Petange")] <-
"Pétange"↪

communes
}

```

```{r}
former_communes <- get_former_communes()
current_communes <- get_current_communes()

communes <- get_test_communes(former_communes,
current_communes)↪

```

Once again, we write a function for this. We need to merge
these two lists, and need to make sure that the spelling of the
communes’ names is unified between this list and between the
communes’ names in the data.

We now run the actual test:

Let’s test to see if all the communes from our
dataset are represented.↪

```{r}
setdiff(flat_data$locality, communes)
```

275



9. Rewriting our project

If the above code doesn’t show any communes,
then this means that we are↪

accounting for every commune.

This test is quite simple, and we will see how to create something
a bit more robust and useful later on.

Now, let’s extract the national average from the data and create
a separate dataset with the national level data:

Let’s keep the national average in another
dataset:↪

```{r}
make_country_level_data <- function(flat_data){

country_level <- flat_data %>%
filter(grepl("nationale", locality)) %>%
select(-n_offers)

offers_country <- flat_data %>%
filter(grepl("Total d.offres", locality))
%>%↪

select(year, n_offers)

full_join(country_level, offers_country) %>%
select(year, locality, n_offers,
everything()) %>%↪

mutate(locality = "Grand-Duchy of
Luxembourg")↪

}

276

9.1. An Rmd for cleaning the data

```

```{r}
country_level_data <-

make_country_level_data(flat_data)↪

```

and finally, let’s do the same but for the commune level data:

We can finish cleaning the commune data:

```{r}
make_commune_level_data <- function(flat_data){

flat_data %>%
filter(!grepl("nationale|offres", locality),

!is.na(locality))
}

```

```{r}
commune_level_data <-

make_commune_level_data(flat_data)↪

```

We can finish with a chunk to save the data to disk:

We now save the dataset in a folder for further
analysis (keep chunk option to↪

`eval = FALSE` to avoid running it when
knitting):↪

277



9. Rewriting our project

```{r, eval = FALSE}
write.csv(commune_level_data,

"datasets/house_prices_commune_level_data.csv",↪

row.names = FALSE)
write.csv(country_level_data,

"datasets/house_prices_country_level_data.csv",↪

row.names = FALSE)
```

This last chunk is something I like to add to my Rmd files.

Instead of showing it in the final document but not evaluating
its contents using the chunk option eval = FALSE, like I did,
you could use include = FALSE, so it doesn’t appear in the
compiled document at all. The first time you compile this docu-
ment, you could change the option to eval = TRUE, so that the
data gets written to disk, and then change it to eval = FALSE to
avoid overwriting the data on subsequent knittings. This is up
to you, and it also depends on who the audience of the knitted
output is (do they want to see this chunk at all?).

Ok, and that’s it. You can take a look at the finalised file here1.
You can now remove the save_data.R script, as you have suc-
cessfully ported the code over to an RMarkdown file. If you have
not done it yet, you can commit these changes and push.

Let’s now do the same thing for the analysis script.

1https://is.gd/eBbcsR

278

https://raw.githubusercontent.com/b-rodrigues/rap4all/master/rmds/save_data.Rmd


9.2. An Rmd for analysing the data

9.2. An Rmd for analysing the data

We will follow the same steps as before to convert the analysis
script into an analysis RMarkdown file. Instead of showing the
whole file here, I will show you two important points.

The first point is removing redundancy. In the original script,
we had the following lines:

#Let’s compute the Laspeyeres index for each
commune:↪

commune_level_data <- commune_level_data %>%
group_by(locality) %>%
mutate(p0 = ifelse(year == "2010",

average_price_nominal_euros,↪

NA)) %>%
fill(p0, .direction = "down") %>%
mutate(p0_m2 = ifelse(year == "2010",

average_price_m2_nominal_euros,↪

NA)) %>%
fill(p0_m2, .direction = "down") %>%
ungroup() %>%
mutate(
pl = average_price_nominal_euros/p0*100,
pl_m2 = average_price_m2_nominal_euros/p0_m2

* 100)↪

#Let’s also compute it for the whole country:

279



9. Rewriting our project

country_level_data <- country_level_data %>%
mutate(p0 = ifelse(year == "2010",

average_price_nominal_euros,↪

NA)) %>%
fill(p0, .direction = "down") %>%
mutate(p0_m2 = ifelse(year == "2010",

average_price_m2_nominal_euros,↪

NA)) %>%
fill(p0_m2, .direction = "down") %>%
mutate(
pl = average_price_nominal_euros/p0*100,
pl_m2 = average_price_m2_nominal_euros/p0_m2

* 100)↪

As you can see, this is almost exactly the same code twice. The
only difference between the two code snippets, is that we need
to group by commune when computing the Laspeyeres index for
the communes (remember, this index will make it easy to make
comparisons). Instead of repeating 99% of the lines, we should
create a function that will group the data if the data is the
commune level data, and not group the data if it’s the national
data. Here is this function:

get_laspeyeres <- function(dataset, start_year =
"2010"){↪

which_dataset <- deparse(substitute(dataset))

group_var <- if(grepl("commune",
which_dataset)){↪

280



9.2. An Rmd for analysing the data

quo(locality)
} else {
NULL

}
dataset %>%
group_by(!!group_var) %>%
mutate(p0 = ifelse(year == start_year,

average_price_nominal_euros,↪

NA)) %>%
fill(p0, .direction = "down") %>%
mutate(p0_m2 = ifelse(year == start_year,

average_price_m2_nominal_euros,↪

NA)) %>%
fill(p0_m2, .direction = "down") %>%
ungroup() %>%
mutate(
pl = average_price_nominal_euros/p0*100,
pl_m2 =

average_price_m2_nominal_euros/p0_m2*100)↪

}

So, the first step is naming the function. We’ll call it
get_laspeyeres(), and it’ll be a function of two arguments.
The first is the data (commune or national level data) and the
second is the starting date of the data. This second argument
has a default value of “2010”. This is the year the data starts,
and so this is the year the Laspeyeres index will have a value of
100.

The following lines are probably the most complicated:

281



9. Rewriting our project

which_dataset <- deparse(substitute(dataset))

group_var <- if(grepl("commune",
which_dataset)){↪

quo(locality)
} else {
NULL

}

The first line replaces the variable dataset by its bound
value (that’s what substitute() does) for example,
commune_level_data, and then converts this variable name
into a string (using deparse()). So when the user provides
commune_level_data, which_dataset will be defined as equal
to "commune_level_data". We then use this string to detect
whether the data needs to be grouped or not. So if we detect
the word “commune” in the which_dataset variable, we set
the grouping variable to locality, if not to NULL. But you
might have the following questions: why is locality given as
an input to quo(), and what is quo()?

A simple explanation: locality is a variable in the
commune_level_dataset. If we don’t quote it using quo(), our
function will look for a variable called locality in the body
of the function, but since there is no variable defined that is
called locality in there, the function will look for this variable
in the global environment. But this is not a variable defined in
the global environment either, it is a column in our dataset. So
we need a way to tell this to our function: don’t worry about
evaluating this just yet, I’ll tell you when it’s time.

So by using quo(), we can delay evaluation. So how can we tell
the function that it’s time to evaluate locality? This is where
we need !! (pronounced bang-bang). You’ll see that !! gets

282



9.2. An Rmd for analysing the data

used on group_var inside locality:

group_by(!!group_var)

So if we are calling the function on commune_level_dataset,
then group_var is equal to locality, if not it’s NULL.
!!group_var means that now it’s time to evaluate group_var
(or rather, locality). Because !!group_var gets replaced by
quo(locality), and because group_by() is a {dplyr} function
that knows how to deal with quoted variables, locality gets
looked up among the columns of the data frame. If it’s NULL
nothing happens, so the data doesn’t get grouped.

This is a big topic unto itself, so if you want to know more you
can start by reading the famous {dplyr} vignette called Pro-
gramming with dplyr here2. In case you use {dplyr} a lot, I
recommend you study this vignette because mastering tidy eval-
uation (the name of this framework) is key to becoming com-
fortable with programming using {dplyr} (and other tidyverse
packages). You can also read the chapter I wrote on this in my
other free ebook3.

The next lines of the script that we need to port over to the
Rmd are quite standard, we write code to create some plots
(which were already refactored into a function in the chapter
on collaborating on Github). But remember, we want to have
an Rmd file that can be compiled into a document that can be
read by humans. This means that to make the document clear, I
suggest that we create one subsection by commune that we plot.
Thankfully, we have learned all about child documents in the
literate programming chapter, and this is what we will be using

2https://dplyr.tidyverse.org/articles/programming.html
3https://is.gd/f11De1

283

https://dplyr.tidyverse.org/articles/programming.html
http://modern-rstats.eu/defining-your-own-functions.html#functions-that-take-columns-of-data-as-arguments


9. Rewriting our project

to avoid having to repeat ourselves. The first part is simply the
function that we’ve already written:

```{r}
make_plot <- function(commune){

commune_data <- commune_level_data %>%
filter(locality == commune)

data_to_plot <- bind_rows(
country_level_data,
commune_data

)

ggplot(data_to_plot) +
geom_line(aes(y = pl_m2,

x = year,
group = locality,
colour = locality))

}

```

Now comes the interesting part:

```{r, results = "asis"}
res <- lapply(communes, function(x){

knitr::knit_child(text = c(

'\n',
'## Plot for commune: `r x`',

284

9.2. An Rmd for analysing the data

'\n',
'```{r, echo = FALSE}',
'print(make_plot(x))',
'```'

),
envir = environment(),
quiet = TRUE)

})

cat(unlist(res), sep = "\n")

```

I won’t explain this now in great detail, since that was already
done in the chapter on literate programming. Before continuing,
really make sure that you understand what is going on here.
Take a look at the finalised file here4. You’ll notice that at the
start of the RMarkdown file, I also load some package and the
data saved by the save_data.Rmd RMarkdown file.

You can see how the outputs look like by browsing to the links
below:

• save_data.html, compiled from the save_data.Rmd
source5

• analyse_data.html, compiled from the analyse_data.Rmd
source6

4https://is.gd/L2GICG
5https://is.gd/Z15Ycy
6https://is.gd/D1o4XJ

285

https://raw.githubusercontent.com/b-rodrigues/rap4all/master/rmds/analyse_data.Rmd
https://is.gd/Z15Ycy
https://is.gd/Z15Ycy
https://is.gd/D1o4XJ
https://is.gd/D1o4XJ


9. Rewriting our project

Of course, you could compile the files into Word documents or
PDF, depending on your needs, and you could of course write
many more details than me. I wanted to keep it short; the point
of this chapter was to show you how to use literate programming
and not to write a very detailed analysis.

9.3. Conclusion

This chapter was short, but quite dense, especially when we con-
verted the analysis script to an Rmd, because we’ve had to use
two advanced concepts, tidy evaluation and Rmarkdown child
documents. Tidy evaluation is not a topic that I wanted to dis-
cuss in this book, because it doesn’t have anything to do with
the main topic at hand. However, part of building a robust, re-
producible pipeline is to avoid repetition. In this sense, program-
ming with {dplyr} and tidy evaluation are quite important. As
suggested before, take a look at the linked vignette above, and
then the chapter from my other free ebook. This should help
get you started.

The end of this chapter marks an important step: many analyses
stop here, and this can be due to a variety of reasons. Maybe
there’s no time left to go further, and after all, you’ve got the
results you wanted. Maybe this analysis is useful, but you don’t
necessarily need it to be reproducible in 5, 10 years, so all you
want is to make sure that you can at least rerun it in some
months or only a couple of years later (but be careful with this
assessment, sometimes an analysis that wasn’t supposed to be
reproducible for too long turns out to need to be reproducible
for way longer than expected…).

Because I want this book to be a pragmatic guide, I will now talk
about putting the least amount of effort to make your current

286



9.3. Conclusion

analysis reproducible, and this is by freezing package versions,
which I will show you in the next chapter.

287





10. Basic reproducibility:
freezing packages

We are at a stage where the analysis is done. Converting our
scripts into Rmds was quite easy to justify because writing the
Rmds is also writing the report that we need to send to our boss
(or our research paper, etc). But it might be harder to justify
writing further documentation or package the functions we’ve
had to write for reuse later and otherwise ensure that the anal-
ysis is and stays reproducible. So we are going to start with the
simplest and most cost-effective solution to the reproducibility
issue, which is recording the versions of the packages that were
used. This is quite easy and quick to do and provides at least
some hope that the analysis will stay reproducible. But this
will not do anything to make the analysis more easily re-usable,
will not improve the documentation, nor ensure that what we
wrote is indeed correct. For this, we would need to write tests,
which are missing from our current analysis. We only wrote one
test, which made sure that all the communes were accounted
for. This is why going with a package is so useful (and I need to
stress here that the aim of writing a package is NOT to upload
it to CRAN): packages offer us a great framework for document-
ing, testing and sharing our code (even if only sharing internally
in your company/team, or even just future you). So in order to
take advantage of what packaging our code has to offer, we will
learn about the {fusen} package in the next chapter. {fusen}

289



10. Basic reproducibility: freezing packages

will enable us to convert our Rmd files into a package quite
quickly; your analysis is much closer to being a package than
you think. As you shall see in the next chapter, going from our
Rmds to a fully functioning package is much easier than you
expect, even if you’ve never written a package in your life.

So I hope that I made my point clear: it is not recommended to
stop at this stage, but I also recognize that we live in the real
world with real physical constraints. So because we live in this
imperfect world, sometimes we need to deliver imperfect work.
So let’s see what we can do that is very cheap in terms of effort
and time, but that still allows us to have some hope of having
our analysis reproducible, all thanks to the {renv} package. It
is quite easy to get started with {renv}: simply install it, and
get a record of the used packages and their versions with one
single command. This record gets saved inside a file that can
then be used to restore this project’s library in the future, and
without interfering with the other packages that you already
have installed on your machine. You see, {renv} creates a per-
project library (a library is the set of R packages installed on
your machine) which means that you can have as many versions
of {dplyr} as needed (one per project). The right version of
{dplyr} will be installed and used for the right project only,
and without interfering with other installed versions.

Let’s see how this works by creating such a project-specific li-
brary for our little project.

290



10.1. Recording packages’ version with {renv}

10.1. Recording packages’ version with
{renv}

So now that you’ve used functional and literate programming,
we need to start thinking about the infrastructure surrounding
our code. By infrastructure I mean:

• the R version;
• the packages used for the analysis;
• and otherwise the whole computational environment, even

the computer hardware itself.

{renv} enables you to create Reproducible Environments and
is a package that takes care of point number 2: it allows you to
easily record the packages that were used for a specific project.
This record is a file called renv.lock which will appear at the
root of your project once you’ve set up {renv} and run it. You
can use {renv} once you’re done with an analysis like in our
case, or better yet, immediately at the start of the project. You
can keep updating the renv.lock file as you add or remove
packages from your analysis. The renv.lock file can then be
used to restore the exact same package library that was used for
your analysis on another computer, or on the same computer
but in the future.

This works because {renv} does more than simply create a list
of the used packages and recording their versions inside the
renv.lock file: it actually creates a per-project library that
is completely isolated from the main, default, R library on your
machine, but also from the other {renv} libraries that you might
have set up for your other projects (remember, the library is the
set of R packages installed on your computer). To save time
when setting up an {renv} library, packages simply get copied
over from your main library instead of being re-downloaded and

291



10. Basic reproducibility: freezing packages

re-installed (if the required packages are already installed in your
default library).

To get started, install the {renv} package (make sure to start a
fresh R session):

install.packages("renv")

and then go to the folder containing the Rmds we wrote to-
gether in the previous chapter. Make sure that you have the
two following files in that folder:

• save_data.Rmd, the script that downloads and prepares
the data;

• analyse_data.Rmd, the script that analyses the data.

Also, make sure that the changes are correctly backed up on
Github.com, so if you haven’t already, commit and push any
change to the rmd branch. Because we will be experimenting
with a new feature, create a new branch called renv. You should
know the drill by now, but if not simply follow along:

owner@localhost $ git checkout -b renv

Switched to a new branch 'renv'

We will now be working on this branch. Simply work as usual,
but when pushing, make sure to push to the renv branch:

owner@localhost $ git add .
owner@localhost $ git commit -m "some changes"
owner@localhost $ git push origin renv

292



10.1. Recording packages’ version with {renv}

Once this is done, start an R session, and simply type the fol-
lowing in a console:

renv::init()

You should see the following:

* Initializing project ...
* Discovering package dependencies ... Done!
* Copying packages into the cache ... [76/76]

Done!↪

The following package(s) will be updated in the
lockfile:↪

# CRAN ===============================
***and then a long list of packages***

The version of R recorded in the lockfile will
be updated:↪

- R [*] -> [4.2.2]

* Lockfile written to
'path/to/housing/renv.lock'.↪

* Project 'path/to/housing' loaded. [renv
0.16.0]↪

* renv activated -- please restart the R
session.↪

Let’s take a look at the files that were created (if you prefer using
your file browser, feel free to do so, but I prefer the command
line):

293



10. Basic reproducibility: freezing packages

owner@localhost $ ls -la

total 1070
drwxr-xr-x 1 owner Domain Users 0 Feb 27

12:44 .↪

drwxr-xr-x 1 owner Domain Users 0 Feb 27
12:35 ..↪

-rw-r--r-- 1 owner Domain Users 27 Feb 27
12:44 .Rprofile↪

drwxr-xr-x 1 owner Domain Users 0 Feb 27
12:40 .git↪

-rw-r--r-- 1 owner Domain Users 306 Feb 27
12:35 README.md↪

-rw-r--r-- 1 owner Domain Users 2398 Feb 27
12:38 analyse_data.Rmd↪

drwxr-xr-x 1 owner Domain Users 0 Feb 27
12:44 renv↪

-rw-r--r-- 1 owner Domain Users 20502 Feb 27
12:44 renv.lock↪

-rw-r--r-- 1 owner Domain Users 6378 Feb 27
12:38 save_data.Rmd↪

As you can see, there are two new files and one folder. The new
files are the renv.lock file that I mentioned before and a file
called .Rprofile. The new folder is simply called renv. The
renv.lock is the file that lists all the packages used for the anal-
ysis. .Rprofile files are files that get read by R automatically
at startup (as discussed at the very beginning of part one of
this book). You should have a system-wide one that gets read
on startups of R, but if R discovers an .Rprofile file in the
directory it starts on, then that file gets read instead. Let’s see
the contents of this file (you can open this file in any text editor,

294



10.1. Recording packages’ version with {renv}

like Notepad on Windows, but then again I prefer the command
line):

owner@localhost $ cat .Rprofile

The files contains the single line:

source("renv/activate.R")

activate.R is an R script that was also create by renv::init(),
which you can find in the renv folder. Let’s take a look at the
contents of this folder:

owner@localhost $ ls renv

total 107
drwxr-xr-x 1 owner Domain Users 0 Feb 27

12:44 .↪

drwxr-xr-x 1 owner Domain Users 0 Feb 27
12:35 ..↪

-rw-r--r-- 1 owner Domain Users 27 Feb 27
12:44 activate.R↪

drwxr-xr-x 1 owner Domain Users 0 Feb 27
12:40 .gitignore↪

drwxr-xr-x 1 owner Domain Users 0 Feb 27
12:40 library↪

-rw-r--r-- 1 owner Domain Users 6378 Feb 27
12:38 settings.dcf↪

So inside the renv folder, there is another folder called library:
this is the folder that contains our isolated library for just this
project. That’s something that we would not want to back up on

295



10. Basic reproducibility: freezing packages

Github as it grows quite large. To avoid tracking this folder and
backing it up on Github.com a file called .gitignore (notice the
. at the start of the name) gets used. This is a file that contains
the paths to other files and folders that should be ignored. If
you open it, you will see that the library/ folder is listed there
so it will be ignored. You can have as many .gitignore files as
necessary, but if you put one in the root folder of your project,
then that .gitignore will work project-wide.

For example, if you are working with sensitive data, you could
also add a .gitignore file in the root of the project’s directory,
and simply list the folder containing the sensitive data. Create
this file using your favourite text editor and simply add, for
example if you’re working with sensitive data, the following:

datasets/

This will prevent the datasets/ folder from being tracked and
backed up.

Let’s restart a fresh R session in our project’s directory; you
should see the following startup message:

* Project 'path/to/housing' loaded. [renv
0.16.0]↪

This means that this R session will use the packages installed in
the isolated library we’ve just created. Let’s now take a look at
the renv.lock file:

owner@localhost $ cat renv.lock

296



10.1. Recording packages’ version with {renv}

{
"R": {

"Version": "4.2.2",
"Repositories": [
{
"Name": "CRAN",
"URL": "https://packagemanager.rstudio.com/

all/latest"↪

}
]

},
"Packages": {

"MASS": {
"Package": "MASS",
"Version": "7.3-58.1",
"Source": "Repository",
"Repository": "CRAN",
"Hash": "762e1804143a332333c054759f89a706",
"Requirements": []

},
"Matrix": {
"Package": "Matrix",
"Version": "1.5-1",
"Source": "Repository",
"Repository": "CRAN",
"Hash": "539dc0c0c05636812f1080f473d2c177",
"Requirements": [
"lattice"

]

***and many more packages***

The renv.lock file is a json file listing all the packages, as well as

297



10. Basic reproducibility: freezing packages

their dependencies, that are used for the project. At the top of
the file, the R version that was used to generate the renv.lock
file is also named. It is important to remember that when you’ll
use {renv} to restore a project’s library on a new machine, the
R version will not be restored: so in the future, you might be
restoring this project and running old versions of packages on
a newer version of R, which may sometimes be a problem (but
we’re going to discuss this later).

So… that’s it. You’ve generated the renv.lock file, which means
that future you, or someone else, can restore the library that you
used to write this analysis. All that’s required is for that person
(or future you) to install {renv} and then use the renv.lock
file that you generated to restore the library. Let’s see how this
works by cloning the following Github repository on this link1

(forked from this one here2):

owner@localhost $ git clone
git@github.com:b-rodrigues/targets-minimal.git↪

You should see a targets-minimal folder on your computer
now. Start an R session in that folder and type the following
command:

renv::restore()

You should be prompted to activate the project before restor-
ing:

1https://is.gd/jMVfCu
2https://is.gd/AAnByB

298

https://github.com/b-rodrigues/targets-minimal
https://github.com/wlandau/targets-minimal


10.1. Recording packages’ version with {renv}

This project has not yet been activated.
Activating this project will ensure the project

library↪

is used during restore.
Please see `?renv::activate` for more details.

Would you like to activate this project before
restore? [Y/n]:↪

Type Y and you should see a list of packages that need to be
installed. You’ll get asked once more if you want to proceed,
type y and watch as the packages get installed. If you pay
attention to the links, you should see that many of them get
pulled from the CRAN archive, for example:

Retrieving
'https://cloud.r-project.org/src/contrib/Archive
/vroom/vroom_1.5.5.tar.gz'

↪

↪

Notice the word “Archive” in the url? That’s because this
project uses {vroom} 1.5.5, but as of writing (early 2023),
{vroom} is at version 1.6.1.

Now, maybe you’ve run renv::restore(), but the installation
of the packages may have failed. If that’s the case, let me explain
what likely happened.

I tried restoring the project’s library on two different machines:
a Windows laptop and a Linux workstation. renv::restore()
failed on the Windows laptop, but succeeded on the Linux work-
station.

Why does that happen? Well in the case of the Windows lap-
top, compilation of the {dplyr} package failed. This is likely

299



10. Basic reproducibility: freezing packages

because my Windows laptop does not have the right version of
Rtools installed. If you look inside the renv.lock file that came
with the targets-minimal project, you should notice that the
recorded R version is 4.1.0, but I’m running R 4.2.2 on my com-
puters. So libraries get compiled using Rtools 4.2 and not Rtools
4.0 (which includes the libraries for R 4.1 as well).

So in order to run this project successfully, I should install the
right version of R and Rtools which on Windows should not
be too complicated. But that might be a problem on other
operating systems. Does that mean that {renv} is useless? No,
not at all.

At a minimum, {renv} ensures that a project’s library doesn’t
interfere with another project’s library while you’re working on
different projects. You can be working on several projects and
be sure that if you update your library (for example, to use a
nice new function from one specific package), that update will
only affect the project where the library was updated, and not
the other libraries from the other projects. When working with
a system-wide library, updating packages for a project could in-
troduce breaks in other projects. Without {renv}, such breaks
could happen because another function coming from some other
package that also got updated and that you use in another long-
term project got removed, or renamed, or simply works differ-
ently now. This types of issues can be avoided by using a per-
project library, which is exactly what {renv} does.

But also, apart from that already quite useful feature,
renv.lock files provide a very useful blueprint for Docker,
which we are going to explore in a future chapter. Only to give
you a little taste of what’s coming: since the renv.lock file
lists the R version that was used to record the packages, we
can start from a Docker image that contains the right version
of R. From there, restoring the project using renv::restore()

300



10.1. Recording packages’ version with {renv}

should succeed without issues. If you have no idea what this all
means, do not worry, you will know by the end of the book, so
hang in there.

So should you use {renv}? I see two scenarios where it makes
sense:

• You’re done with the project and simply want to keep a
record of the packages used. Simply call renv::init() at
the end of the project and commit and push the renv.lock
file on Github.

• You want to use {renv} from the start to isolate the
project’s library from your whole R installation’s library
to avoid any interference (I would advise you to do it like
this).

In the next section, we’ll quickly review how to use {renv} on
a “daily basis”.

10.1.1. Daily {renv} usage

So let’s say that you start a new project and want to use {renv}
right from the start. You start with an empty directory, and add
a template .Rmd file, and let’s say it looks like this:

---
title: "My new project"
output: html_document
---

```{r setup, include=FALSE}
library(dplyr)
```

301



10. Basic reproducibility: freezing packages

## Overview

## Analysis

Before continuing, make sure that it correctly compiles into a
HTML file by running rmarkdown::render("test.Rmd") in the
correct directory.

In the setup chunk you load the packages that you need. Now,
save this file, and start a fresh session in the same directory
and run renv::init(). You should see the familiar prompts
described above, as well as the renv.lock file (which will only
contain {dplyr} and its dependencies).

Now, after the library(dplyr) line, add the following
library(ggplot2) (or any other package that you use on a
daily basis). Make sure to save the .Rmd file and try to render it
again by using rmarkdown::render("test.Rmd") (or if you’re
using RStudio, by clicking the right button), but, spoiler alert,
it won’t work. Instead you should see this:

Quitting from lines 7-9 (my_new_project.Rmd)
Error in library(ggplot2) : there is no package

called 'ggplot2'↪

Don’t be confused: remember that {renv} is now activated,
and that each project where {renv} is enabled has its own
project-specific library. You may have {ggplot2} installed
on your system-wide library, but this {renv}-enabled project
does not have it yet on its own specific library. This means

302



10.1. Recording packages’ version with {renv}

that you need to install {ggplot2} for your project. To do
so, simply start an R session within your project and run
install.packages("ggplot2"). If the version installed on
your system-wide library is the latest version available on
CRAN, the package will simply be copied over from the system-
wide to the project-specific library, if not, the latest version will
be downloaded onto your project’s library. You can now update
the renv.lock file. This is done using renv::snapshot();
this will show you a list of new packages to record inside the
renv.lock file and ask you to continue:

**list of many packages over here**

Do you want to proceed? [y/N]:
* Lockfile written to

'path/to/my_new_project/renv.lock'.↪

If you now open the renv.lock file, and look for the string
"ggplot2" you should see it listed there alongside its dependen-
cies. Let me reiterate: this version of {ggplot2} is now unique
to this project. You can work on other projects with other ver-
sions of {ggplot2} without interfering with this one. If for some
reason you didn’t want to have the latest version of {ggplot2}
installed in the project-specific library, you could have installed
an older version, still thanks to {renv}. For example, to install
an older version of {AER}:

renv::install("AER@1.0-0") # this is a version
from August 2008↪

But just like in the previous section, where we wanted to restore
an old project that used {renv}, installation of older packages
may fail. If you need to use old packages there are other easier

303



10. Basic reproducibility: freezing packages

approaches which we are also going to explore in this chapter.

When you install more of the required packages for your project,
you need to call renv::snapshot() to add the packages to
the renv.lock file. Once you’re done with your project, call
renv::snapshot() one last time to make sure that every de-
pendency is correctly accounted for. Don’t forget to version the
renv.lock file using Git!

10.1.2. Collaborating with {renv}

{renv} is also quite useful when collaborating. You can start
the project and generate the lock file, and when your teammates
clone the repository from Github, they can get the exact same
package versions as you. All of you only need to make sure that
everyone is running the same R version to avoid any issues.

There is a vignette on just this that I invite you to read for more
details, see here3.

10.1.3. {renv}’s shortcomings

As useful as {renv} is, it also comes with some shortcomings
(which I’ve already alluded to before). It is quite important to
understand what {renv} does and what it doesn’t do, and why
{renv} alone is not enough to ensure the long-term reproducibil-
ity of your projects.

The first problem, and I’m repeating myself here, is that {renv}
only records the R version used for the project, but does not re-
store it when calling renv::restore(). You need to install the

3https://is.gd/sXpWVp

304

https://rstudio.github.io/renv/articles/collaborating.html


10.1. Recording packages’ version with {renv}

right R version yourself. On Windows this should be fairly easy
to do, but then you need to start juggling R versions and know
which scripts need which R version, which can get confusing.

There is the {rig} package that makes it easy to install and
switch between R versions that you could check out4 if you’re
interested. However, I don’t think that {rig} should be used
for our purposes. I believe that it is safer to use Docker instead,
and we shall see how to do so in the coming chapters.

The other issue of using {renv} is that future you, or your team-
mates or people that want to reproduce your results need to
install packages that may be quite difficult to install, either be-
cause they’re very old by now, or because their dependencies
are difficult to satisfy. Have you ever tried to install a pack-
age that depended on {rJava}? Or the {rgdal} package? In-
stalling these packages can be quite challenging because they
need specific system requirements that may be impossible for
you to install (either because you don’t have admin rights on
your workstation, or because the required version of these sys-
tem dependencies is not available anymore). Having to install
these packages (and potentially quite old versions at that) can
really hinder the reproducibility of your project. Here again,
Docker provides a solution. Future you, your teammates or
other people simply need to be able to run a Docker container,
which is a much lower bar than installing these old libraries.

Note also that during your journey, you will want to improve
your scripts, you maybe will also want to upgrade some depen-
dencies to take advantage of recent developments in some pack-
ages. This will require upgrading the {renv} environment. To
do so, run update.packages() to update the packages, and then
renv::snapshot() to to generate a new renv.lock file. But

4https://is.gd/dvH2Sj

305

https://github.com/r-lib/rig


10. Basic reproducibility: freezing packages

how will you be sure that these upgrades will not impair some
other parts of your code? Turning the analysis into a package
will help with this, as I’ll explain in the next chapter, because
once the analysis is turned into a package, testing gets much
easier. If the tests indicate that something went wrong, you can
simply restore the previous lock file using Git and restore the
old library.

I want to stress that this does not mean that {renv} is useless:
we will keep using it, but together with Docker to ensure the
reproducibility of our project. As I’ve written above already,
at a minimum {renv} ensures that a project’s library doesn’t
interfere with another project’s library and this is in itself already
quite useful. The renv.lock file also provides a blueprint that
can be used (by you or someone else) to build a Docker image
for long-term reproducibility.

Let’s now quickly discuss two other packages before finishing
this chapter, which provide an answer to the question: how to
rerun an old analysis if no renv.lock file was made available
at the time the analysis was made?.

10.2. Becoming an R-cheologist

So let’s say that you need to run an old script, and there’s no
renv.lock file around for you to restore the right package li-
brary. There might still be a solution (apart from running the
script on the current version on R and packages, and hope that
everything goes well), but for this you need to at least know
roughly when that script was written. Let’s say that you know
that this script was written back in 2017, somewhere around Oc-
tober. If you know that, you can use the {rang} or {groundhog}

306



10.2. Becoming an R-cheologist

packages to download the packages as of October 2018 in a sep-
arate library and then run your script.

{rang} is fairly recent as of writing (February 2023) so I won’t go
into too much detail now, as it is likely that the package will keep
evolving rapidly in the coming weeks. So if you want to use it
and follow its development, take a look at its Github repository
here5 and read the prepint6 (Chan and Schoch 2023).

{groundhog} (website7) is another option that has been around
for more time and is fairly easy to use. Suppose that you have
a script from October 2018 that looks like this:

library(purrr)
library(ggplot2)

data(mtcars)

myplot <- ggplot(mtcars) +
geom_line(aes(y = hp, x = mpg))

ggsave("/home/project/output/myplot.pdf",
myplot)↪

If you want to run this script with the versions of {purrr} and
{ggplot2} that were current in October 2017, you can achieve
this by simply changing the library() calls:

groundhog::groundhog.library("
library(purrr)

5https://is.gd/sQu7NV
6https://arxiv.org/abs/2303.04758
7https://groundhogr.com

307

https://github.com/chainsawriot/rang
https://arxiv.org/abs/2303.04758
https://groundhogr.com


10. Basic reproducibility: freezing packages

library(ggplot2)",
"2017-10-04"
)

data(mtcars)

myplot <- ggplot(mtcars) +
geom_line(aes(y = hp, x = mpg))

ggsave("/home/project/output/myplot.pdf",
myplot)↪

but you will get the following message:

-----------------------------------------------
|IMPORTANT.
| Groundhog says: you are using R-4.2.2, but

the version of R current↪

| for the entered date, '2017-10-04', is
R-3.4.x. It is recommended↪

| that you either keep this date and switch
to that version of R, or↪

| you keep the version of R you are using but
switch the date to↪

| between '2022-04-22' and '2023-01-08'.
|
| You may bypass this R-version check by

adding:↪

| `tolerate.R.version='4.2.2'`as an option in
your groundhog.library()↪

| call. Please type 'OK' to confirm you have
read this message.↪

308



10.2. Becoming an R-cheologist

| >ok

Groundhog is speaking to us, advising us to switch to the
version of R that was current at that time the script was
written. If we want to ignore the message’s advice, and add
tolerate.R.version = '4.2.2', we may get the script to run
anyways:

groundhog.library("
library(purrr)
library(ggplot2)",
"2017-10-04",
tolerate.R.version = "4.2.2")

data(mtcars)

myplot <- ggplot(mtcars) +
geom_line(aes(y = hp, x = mpg))

ggsave("/home/project/output/myplot.pdf",
myplot)↪

But just like for {renv} (or {rang}), installation of the packages
can fail, and for the same reasons (unmet system requirements
most of the time).

So here again, the solution is to take care of the missing piece
of the reproducibility puzzle, which is the whole computational
environment itself.

309



10. Basic reproducibility: freezing packages

10.3. Conclusion

In this chapter you had a first (maybe a bit sour) taste of re-
producibility. This is because while the tools presented here are
very useful, they will not be sufficient if we want our project to
be truly reproducible, especially in the long term. There are too
many things that can go wrong when re-installing old package
versions, so we must instead provide a way for users to not have
to do it at all. This is where Docker is going to be helpful. But
before that, we need to hit the development bench again. We
are actually not quite done with our project; before going to full
reproducibility, we should turn our analysis into a package. And
as you will see, this is going to be much, much, easier than you
might expect. You already did 95% of the job! There are many
advantages to turning our analysis into a package, and not only
from a reproducibility perspective.

310



11. Packaging your code

In this chapter, you’re going to learn how to create your own
package. And let me be clear right from the start: the goal
here is not to convert your analysis as a package to then get
it published on CRAN. No, that’s not it. The goal is to con-
vert your analysis into a package because when your analysis
goes into package development mode, you can, as the developer,
leverage many tools that will help you improve the quality of
your analysis. These tools will make it easier for you to:

• document the functions you had to write for your analysis;
• test these functions;
• properly define dependencies;
• use all the code you wrote into a true reproducible pipeline.

Turning the analysis into a package will also make the separa-
tion between the software development work you had to write
for your analysis (writing functions to clean data for instance)
from the analysis itself much clearer. The package itself can
be published on Github (if there’s nothing particularly sensitive
about it) and can also be very easily installed from R itself from
Github, or you can store it inside your organisation and then
simply install it locally.

By turning your analysis into a package you will essentially end
up with two things:

• a well-documented, and tested package;

311



11. Packaging your code

• an analysis that uses this package like any other package.

Making this separation will then make it easier to record depen-
dencies of your analysis using {renv}, as your package will be
a package like any other that needs to be recorded. And what’s
more, we can start with the .Rmd files that we have already writ-
ten! The {fusen} package (Rochette 2022) will bridge the gap
between the .Rmd files and the package: as Sébastien Rochette,
the author of {fusen}, says:

If you have written an Rmd file, you have (almost)
already written a package.

But you could just as well start directly with an empty {fusen}
package template, and then start your analysis from there. Pack-
age development with {fusen} is simply writing RMarkdown
code.

11.1. Benefits of packages

Let’s first go over the benefits of turning your analysis into a
package once again, as this is crucial.

The main point is not to turn the analysis into a package to
publish on CRAN (but you can if you want to). The point is
that when you analyse data, you have to write a lot of custom
code, and very often, you don’t expect to write that much cus-
tom code when starting. Let’s think about our little project:
all we wanted was to create some plots from Luxembourguish
houses’ price data. And yet, we had to scrape Wikipedia on two
occasions, clean an Excel file, and write a test… the project is
quite modest but the amount of code (and thus opportunities to
make mistakes) is quite large. But, that’s not something that

312



11.2. {fusen} quickstart

we could have anticipated, hence why we didn’t start the analy-
sis by writing a package but a script (or an .Rmd) instead. But
then as this script grows larger and larger, we realise that we
might need something else than a simple .Rmd file and this is
when we would start writing a package. Without {fusen}, we
would almost need to start from scratch.

The other benefit of turning all this code into a package is that
we get a clear separation between the code that we wrote purely
to get our analysis going (what I called the software development
part before) from the analysis itself (which would then typically
consist in computing descriptive statistics, running regression or
machine learning models, and visualisation). This then in turn
means that we can more easily maintain and update each part
separately. So the pure software development part goes into
the package, which then gives us the possibility to use many
great tools to ensure that our code is properly documented and
tested, and then the analysis can go inside a purely reproducible
pipeline. Putting the code into a package also makes it easier
to reuse across projects.

11.2. {fusen} quickstart

If you haven’t already, install the {fusen} package:

install.packages("fusen")

{fusen} makes the documentation first method proposed by
Sébastien Rochette, {fusen}’s author, simple to use. The idea
is to start from documentation in the form of an .Rmd file and
go from there to a package. Let’s dive right into it by starting
from a template included in the {fusen} package. Start an R

313



11. Packaging your code

session from your home (or Documents) directory and run the
following:

fusen::create_fusen(path = "fusen.quickstart",
template = "minimal")

This will create a directory called fusen.quickstart inside your
home (or Documents) directory. Inside that folder, you will find
another folder called dev/. Let’s see what’s inside it (I use the
command line to list the files, but you’re free to use your file
explorer program):

owner@localhost $ ls dev/
0-dev_history.Rmd flat_minimal.Rmd

dev/ contains two .Rmd files, 0-dev_history.Rmd and
flat_miminal.Rmd. They’re both important, so let me explain
what they do:

• flat_minimal.Rmd is only an example, a stand-in for
our own .Rmd files. When doing actual work, we will
be using the Rmd file(s) that we have written before
(analyse_data.Rmd and save_data.Rmd) instead, or if
this is a fresh project, we could rename flat_minimal.Rmd
and use it as a template for our analysis.

• 0-dev_history.Rmd contains lines of code that you typi-
cally run when you’re developing a package. For example,
a line to initialise Git for the project, a line to add some
dependencies, etc. The idea is to write down every-
thing that you type in the console in this file. This leaves
a trace of what you have been doing and also acts as a
checklist so that you can make sure that you didn’t for-
get anything. You can also re-use for any other package

314



11.2. {fusen} quickstart

development project.

Before describing these files in detail, I want to show you this
image taken from {fusen}’s website1:

Figure 11.1.: fusen takes care of the boring stuff for you!

On the left-hand side of the image, we see the two template
.Rmd files from {fusen}. 0-dev_history.Rmd contains a chunk
called description. This is the main chunk in that file that
we need to execute to get started with {fusen}. Running this
chunk will create the package’s DESCRIPTION file (don’t worry
if you don’t know about this file yet, I will explain). Then,
the second file flat_minimal.Rmd (or our very own .Rmd files)
contains functions, tests, examples, and everything we need for
our analysis. When we inflate the Rmd file, {fusen} places

1https://is.gd/5pJi2h

315

https://thinkr-open.github.io/fusen/


11. Packaging your code

every piece from this .Rmd file in the right place: the functions
get copied into the package’s R/ folder, tests go into the tests/
folder, and so on. {fusen} simply takes care of everything for
us!

But for {fusen} to be able to work its magic, we do need to
prepare our .Rmd files a bit. But don’t worry, it is mostly simply
giving adequate names to our code chunks. Let’s take a look at
the flat_minimal.Rmd file that was just generated. If you open
it in a text editor, you should see that it is a fairly normal .Rmd
file. There is a comment telling you to first run the description
chunk in the 0-dev_history.Rmd file before changing this one.
But let’s keep reading flat_minimal.Rmd. What’s important
comes next:

# my_fun

```{r function-my_fun}
#' my_fun Title
#'
#' @return 1
#' @export
#'
#' @examples
my_fun <- function() {

1
}
```

```{r examples-my_fun}
my_fun()
```

316



11.2. {fusen} quickstart

```{r tests-my_fun}
test_that("my_fun works", {

})
```

This is a section titled my_fun. Then comes the definition of
my_fun(), inside a chunk titled function-my_fun, then comes
an example, inside a chunk titled examples-my_fun and finally
a test in a chunk titled tests-my_fun.

This is how we need to rewrite our own .Rmd files to be able
to use {fusen}, and what’s really nice is that this is essentially
what we did before, but with some added structure on it. Using
{fusen} just forces us to clean up our code and define examples
and tests (if we want them) more cleanly and explicitly. Also,
you might have noticed that in the chunk with the function defi-
nition, there are a bunch of comments that start with #'. These
are {roxygen2} type comments. As the package’s documenta-
tion gets built, these comments get automatically turned into
the documentation you see when you type help("my_fun") in
an R console. So even the comments that you typically write
to explain how your code works can be re-used to build docu-
mentation that will be much easier to browse than comments in
source code!

So, basically, a {fusen}-ready .Rmd file is nothing more than
an .Rmd file with some structure imposed on it. Instead of doc-
umenting your functions as simple comments, document them
using {roxygen2} comments, which then get turned into the
package’s documentation automatically. Instead of trying your
function out on some mock data in your console, write down
that example inside the .Rmd file itself. Instead of writing ad-
hoc tests, or worse, instead of testing your functions on your

317



11. Packaging your code

console manually, one by one (and we’ve all done this), write
down the test inside the .Rmd file itself, right next to the func-
tion you’re testing.

Write it down, write it down, write it down… you’re al-
ready documenting and testing things (most of the time in the
console only), so why not just write it down once and for all, so
you don’t have to rely on your ageing, mushy brain so much?
Don’t make yourself remember things, just write them down!
{fusen} gives you a perfect framework to do this. The added
benefit is that it will improve your package’s quality through
the tests and examples that are not directly part of the analysis
itself but are still required to make sure that the analysis is of
high quality, reproducible and maintainable. So that if you start
messing with your functions, you have the tests right there to
tell you if you introduced breaking changes.

Let’s go back to the template and inflate it into a package. Open
0-dev_history.Rmd and take a look at the description code
chunk:

```{r description, eval=FALSE}
Describe your package
fusen::fill_description(

pkg = here::here(),
fields = list(
Title = "Build A Package From Rmarkdown
File",↪

Description = "Use Rmarkdown First method to
build your package.↪

Start your package with
documentation.↪

318

11.2. {fusen} quickstart

Everything can be set from a
Rmarkdown file↪

in your project.",
`Authors@R` = c(
person("Sebastien", "Rochette", email =

"sebastien@thinkr.fr",↪

role = c("aut", "cre"),
comment = c(ORCID =

"0000-0002-1565-9313")),↪

person(given = "ThinkR", role = "cph")
)

)
)
Define License with use_*_license()
usethis::use_mit_license("Sébastien Rochette")
```

The fill_description() function will create the package’s
DESCRIPTION file. Here2 is an example of such a file. This
file provides some information on who wrote the package, the
purpose of the package, as well as some metadata such as the
package’s version. While developing your package, you will
continuously fill in some important extra parts of this file, such
that parts that list dependencies required to be able to use your
package: Depends:, Imports: and Suggests:. Depends: is
where you list packages (or R versions) that must be installed
for your package to work (if they’re not installed, they will
be installed alongside your package). This is the same with
Imports:, and the difference with Depends: is most of the
time irrelevant: packages listed under Depends: will not only
be loaded when you load your package, but also attached.

2https://is.gd/PfvkSZ

319

https://raw.githubusercontent.com/b-rodrigues/chronicler/c34239d0d42a4ad6082dff614fc6b4c0e9b917d8/DESCRIPTION


11. Packaging your code

This means that the functions from these packages will also
be available to the end user when loading your package. Most
of the time, you do not have to list packages under Depends:.
Packages listed under Imports: will only be loaded, meaning
that their functions will only be available to your packages’
functions, not the end-users themselves. If that’s confusing,
don’t worry too much about it, this will not be consequential
for our purposes. Finally, Suggests: are dependencies that
are not critical for your package to run, usually these are
only necessary if you want to run the code from the package’s
vignettes or examples. As you can imagine, listing the right
packages under the right category can be a daunting task. But
don’t worry, {fusen} takes care of this automatically for us!
Simply focus on writing your .Rmd files.

The last line of this chunk runs usethis::use_mit_license().
{usethis} is a package that contains many helper functions
to help you develop packages. You can choose among many
licenses. Note that any open-source work should present a
license so that users know how they are allowed to use it.
Otherwise, theoretically, without a license, no one is allowed to
re-use or share your work. You don’t need to think too much
about it at the start since you can always change the license
later. And if you don’t want to publish your package anywhere
(nor CRAN, nor Github) and keep it completely internal to
your organisation, you can just define a proprietary license with
usethis::use_proprietary_license("your name"). My
very personal take on licenses is that you should use copyleft
licenses as much as possible (so licenses like the GPL) which
ensure that if others take your code and change it, their changes
also have to be republished to the public under the GPL – but
only if they wish to publish their changes at all. They could
always keep their modifications totally private, which means
that companies can, and do, use GPL’ed code in their internal

320



11.2. {fusen} quickstart

products.

It’s when that product gets released to the public that the source
code must be released as well. This ensures that open code stays
open.

However, licenses like the MIT allow private companies to take
open source and freely available code and incorporate it inside
their own proprietary tools, without having to give back their
modifications to the community. Some people argue that this
is the true free license because anyone is then also free to use
any code and they also have the liberty of not having to give
anything back to the community. I think that this is a very
idiotic argument, and when proponents of permissive licenses
like the MIT (or BSD) get their code taken and not even thanked
for it (as per the license, which doesn’t even force anyone to
cite the software), and their software gets used for nefarious
purposes, the levels of cope are through the roof3 (archived link
for posterity). Anyway, I got side-tracked here, let’s go back to
our package.

Run the code of the two functions inside the description chunk
in an R console (don’t change anything for now, and make sure
that the R session was started on the root of the project, so in
the fusen.quickstart/ folder), and see the DESCRIPTION file
appear magically in the root of the folder (as well as the LICENSE
file, containing the license).

For now, we can ignore the rest of the 0-dev_history.Rmd file:
actually, everything that follows the description code chunk
is totally optional but still useful. If you look at them, you
see that the lines that follow simply help you remember to do
useful things, like initialising Git, creating a Readme file, add

3https://is.gd/PS45xu

321

https://web.archive.org/web/20230223092823/https://www.cs.vu.nl/~ast/intel/


11. Packaging your code

some usual dependencies, and so on. But let’s ignore this for
now, and go to the flat_minimal.Rmd file.

Go at the end of the file, and take a look at the chunk titled
development-inflate. This is the chunk that will convert the
.Rmd file into a fully functioning package. This process is called
inflating the .Rmd file (because a fusen is a type of origami fig-
ure that you fold in a certain way, which can then get literally
inflated into a box). Run the code in that chunk, and see your
analysis become a package automagically.

If you look now at the projects’ folder, you will see several new
sub-folder:

• R/: the folder that contains the functions;
• man/: contains the functions’ documentation;
• tests/: contains the tests;
• vignettes/: contains the vignettes.

Every function defined in the flat_minimal.Rmd file is now in-
side the R/ folder; all the documentation written as {roxygen2}
comments is now neatly inside man/, the tests are in tests/,
and flat_minimal.Rmd has been converted to an actual vignette
(without all the development chunks). This is now a package
that can be installed immediately using devtools::install(),
or that can be shared on Github and installed from there. Right
now, without doing anything else. You can even generate a web-
site for your package: got back to the 0-dev_history.Rmd and
check the last code chunk, under the title Share the package.
Start a new, fresh session at the root of your project and run
the two following lines from that last chunk:

# set and try pkgdown documentation website
usethis::use_pkgdown()

322



11.3. Turning our Rmds into a package

pkgdown::build_site()

This will build a website for your package using the {pkgdown}
website and open your web browser and show you what it looks
like. The files for this website are in the newly created docs/
folder in the root of your package folder. This can then be
hosted, for free, with a service from Github called Github Pages
so people can explore the package’s functions and documenta-
tion without having to install the package! Later in this chapter,
I will show you how to do this.

11.3. Turning our Rmds into a package

Ok, so I hope to have convinced you that {fusen} is definitely
something that you should add to your toolbox. Let’s now turn
our analysis into a package, but before diving right into it, let’s
think about it for a moment.

We have two .Rmd files, one for getting and cleaning the data,
which we called save_data.Rmd and another for analysing this
data, called analyse_data.Rmd.

In both .Rmd files, we defined a bunch of functions, but most
of the functions were defined in the save_data.Rmd script. In
fact, in the analyse_data.Rmd file we defined only two func-
tions, get_laspeyeres(), the function to get the Laspeyeres
price index, and make_plot(), the function to create the plots
for our analysis.

We are faced with the following choice here:

• make both these .Rmd files fusen-ready, and inflate
them both. This would put the functions from both

323



11. Packaging your code

save_data.Rmd and analyse_data.Rmd into the inflated
package R/ folder;

• put all the functions into save_data.Rmd and only inflate
that file. The other, analyse_data.Rmd can then be used
exclusively for the analysis stricto sensu.

This is really up to you, there is no right or wrong answer. You
could even go for another option if you wanted. It all depends
on how much time you want to invest in this. If you want to
get done quickly, the first option, where you simply inflate both
files is the fastest. If you have more time, the last option, where
you neatly split everything might be better. I propose that we
go for the second option. This way, we only have to inflate one
file, and in our case here, it won’t take much time anyways. It’s
literally only moving two code chunks from analyse_data.Rmd
to save_data.Rmd. So before continuing, let’s go back to our
repository and switch back to the rmd branch that contains the
.Rmd files (let’s ignore freezing packages with {renv} and thus
the renv branch for now):

owner@localhost $ git checkout rmd

Using the rmd branch as a starting point, let’s create a new
branch called fusen:

owner@localhost $ git checkout -b fusen

Switched to a new branch 'fusen'

We will now be working on this branch. Simply work as usual,
but when pushing, make sure to push to the fusen branch:

324



11.3. Turning our Rmds into a package

owner@localhost $ git add .
owner@localhost $ git commit -m "some changes"
owner@localhost $ git push origin fusen

By now, that repository should have four branches:

• master, or main with the simple .R scripts;
• rmd, with the .Rmd files
• renv, containing the .Rmd files as well, and the renv.lock

file
• fusen, the branch we will be using now.

If you’ve skipped the first part of the book, or didn’t diligently
create the branches and push, you can fork this repository4 and
then clone it to start from a sane base. Switch to the rmd branch,
and create a branch called fusen.

First order of business: create a {fusen} flat template in a dev/
folder. Start a fresh R session inside the housing/ folder, and
run the following:

fusen::create_fusen(path = ".",
template = "minimal",
overwrite = TRUE)

Because we already have a folder for our project, called
housing/ we use "." which essentially means “right here”. We
need the overwrite = TRUE option because the folder exists
already. Running the above command will add the dev/ folder.
Move save_data.Rmd inside dev/; remember, we only want to
inflate that one: analyse_data.Rmd will be a simple .Rmd that
will use our package to load the needed functions and data.

4https://is.gd/jGZrMF

325

https://github.com/b-rodrigues/housing


11. Packaging your code

Next step, move the functions get_laspeyeres() and
make_plot() from analyse_data.Rmd to save_data.Rmd.
Simply cut and paste these functions from one .Rmd to the
other. Make sure save_data.Rmd looks something like this5,
take a look at the end of the script to find the functions we’ve
moved over. The analyse_data.Rmd script is exactly the same,
minus the functions that we’ve just moved over.

Ok, so now, we need to make save_data.Rmd ready to be
inflated. Take inspiration from the flat_minimal.Rmd that
fusen::create_fusen() put in the dev/ folder. This is what
the end-result should look like6 (no worries, I’m going to
explain how I got there). For consistency with your future
use of {fusen}, you could also rename the save_data.Rmd to
flat_save_data.Rmd, although this won’t avoid {fusen} to
work properly.

Let’s start with the first function, get_raw_data(). If
you compare the before7, and after8, the differences are
that we have named the chunk containing the function,
function-get_raw_data and added documentation in the
form of {roxygen2} comments. Naming the chunks is essential:
this is how {fusen} knows that this chunk contains a function
that should go into the R/ folder. {roxygen2} comments are
strictly speaking not required, but it is highly advised that
you add them: this way, your function will get documented
and users (including future you) will be able to read the docu-
mentation by typing help(get_raw_data). And you’re likely
already adding comments explaining what the function does
anyway. Another difference is that I have made all the functions

5https://is.gd/fusen_save_data
6https://is.gd/anRjt4
7https://is.gd/fusen_save_data
8https://is.gd/inflate_ready_save_data

326

https://raw.githubusercontent.com/b-rodrigues/rap4all/master/rmds/save_data_fusen.Rmd
https://is.gd/anRjt4
https://raw.githubusercontent.com/b-rodrigues/rap4all/master/rmds/save_data_fusen.Rmd
https://raw.githubusercontent.com/b-rodrigues/rap4all/master/rmds/flat_save_data.Rmd


11.3. Turning our Rmds into a package

referentially transparent. Take a closer look at make_plot()
in the before and after .Rmd’s. You will see that I’ve added
two arguments to make_plot(), country_level_data and
commune_level_data. This is really important, so don’t forget
to do it!

Remember when I mentioned that the good thing about turn-
ing our analysis into a package is that it gives us a framework
to develop high-quality code by using nice development tools?
{roxygen2} type comments for documentation is the first such
tool in this list. By commenting your functions, you explain
what the inputs are, what the outputs are going to be, and also
how to use the functions with some examples. Using {fusen}
(and {roxygen2}), you simply continue doing the same, but
with some added structure. This added structure is not costly
to impose on yourself, and comes with many added benefits (in
this case, free documentation!). I’m repeating myself but I re-
ally want to drive this point home: the goal is not to have to
add code on top of what you already did. The point is to do
what you always do, but within a framework.

Let’s now look at the functions’ {roxygen2}-type comments.
The first line:

#' get_raw_data Gets raw nominal house price
data from LU Open Data Portal↪

will create the title of the function’s help page. Then come the
@param lines (in this case we only have one):

#' @param url Optional: Persistent url to the
data↪

This lists the parameters of the function. Here you can explain

327



11. Packaging your code

exactly what the inputs should be. What happens if the function
you’re documenting has several parameters and you forget to
document one? If that happens, when you will inflate the file,
you will get a warning in the console that will look like this:

inflate warnings and errors: Undocumented
arguments in documentation↪

object 'get_raw_data'
'url'

Then come the @importFrom statements. This is where you list
dependencies:

#' @importFrom readxl excel_sheets read_excel
#' @importFrom utils download.file
#' @importFrom dplyr mutate rename select
#' @importFrom stringr str_trim
#' @importFrom janitor clean_names
#' @importFrom purrr map_dfr

This is important, because the statements will write the depen-
dencies into the package’s NAMESPACE file. This file is important,
because any function defined there will be available to your pack-
age’s functions when you load the package. So if your function
use dplyr::mutate() for example, your package needs to know
where to look for mutate(). This is where the NAMESPACE file
comes into play. Take the opportunity to list the dependencies
of your function to review them: maybe you’re using a package
for a single dependency that you could easily remove. For ex-
ample, I’m using stringr::str_trim() to remove whitespace
around characters. But I could be using the base R function
trimws() instead, which would remove this dependency. I’m
going to keep it here, because I’m lazy though. It might seem

328



11.3. Turning our Rmds into a package

like extra work to add these statements. But you have to see it
this way: you are writing the functions here, once, that need to
be available to your functions for them to work. The alternative
is to have to write:

library("readxl")
library("utils")
library("dplyr")
library("stringr")
library("janitor")
library("purrr")

on top of each script that uses your functions. This gets old
pretty fast and is error-prone. By declaring the dependencies
here, you ensure that they get recorded by {renv} and will make
using your project much easier.

You will also notice the following importFrom statement:

#' @importFrom utils download.file

download.file() is included in the {utils} package, itself in-
cluded with a base installation of R. So you don’t really need
to specify it; but when inflating the file, you get the following
message:

Consider adding
importFrom("utils", "download.file")

to your NAMESPACE file.

hence why I’ve added it, to silence this message. Again, not
mandatory, but why not do it?

Now comes the @return keyword: this simply tells your users

329



11. Packaging your code

what the function returns. If the function doesn’t return any-
thing, because it only has a side effect (for example, writing
something to disk, or printing something on screen), then you
could return NULL.

#' @return A data frame

Last but not least, the @export keyword:

#' @export

This makes the function available to users that load the pack-
age using library(housing). If you don’t add this keyword,
the function will be only available to the other functions of the
package. Another way to see this: functions decorated with the
@export keyword are public and functions without it are pri-
vate. But the concept of private functions doesn’t really exist
in R. You can always access a “private” function by using :::
(three times the :), as in package:::private_function().

The other functions are documented in the same manner, so
I won’t comment them here. Something else you might have
noticed: I replaced every %>% by the base pipe |>. You don’t
have to do it, but the advantage of using the base pipe is that
it removes the dependency on the {magrittr} package, needed
for %>%. If you want to use %>%, you can keep it, but then should
run the line:

usethis::use_pipe()

in the 0-dev_history.Rmd file, which will take care of adding
this dependency correctly for you (by editing the NAMESPACE
file).

330



11.3. Turning our Rmds into a package

Next comes the test we wrote. As a reminder, here is how it
looked like in our original .Rmd file:

Let’s test to see if all the communes from our
dataset are represented.↪

```{r}
setdiff(flat_data$locality, communes)
```

The objects communes and flat_data have to obviously exist
for this test to pass. This was a very simple test that must be
monitored interactively. If commune names are returned here,
then this means that there are communes left that we need to
include in our data. But remember: we are aiming at building
a RAP, and don’t want to have to look at it as it is running
to see if everything is alright. What we need is a test that
returns an error if it fails and which should completely halt the
pipeline. So for this we use the {testthat} package, and write
a so-called unit test. We’re going to deep-dive into unit testing
(and assertive testing) in the next chapter, so for now, let me
simply comment the test:

```{r tests-clean_flat_data}
We now need to check if we have them all in

the data.↪

The test needs to be self-contained, hence
why we need to redefine the required

variables:↪

former_communes <- get_former_communes()

331

11. Packaging your code

current_communes <- get_current_communes()

communes <- get_test_communes(
former_communes,
current_communes

)

raw_data <- get_raw_data(url =
"https://is.gd/1vvBAc")↪

flat_data <- clean_raw_data(raw_data)

testthat::expect_true(
all(communes %in% unique(flat_data$locality))

)
```

The first thing that you need to know is that tests need to be
self-contained. This is why we define former_communes and
current_communes again. The reason is that {fusen} will take
this whole chunk and save it inside a script in the package’s
tests/ folder. When executed, the test will run in a fresh session
where the communes object is not defined. So that’s why you
need to redefine every variable the test needs to run. For the
test itself, we use testthat::expect_true(). This function
expects a piece of code that should evaluate to TRUE: if not, we
get an error, and the whole pipeline stops here, forcing us to see
what’s going on. This is exactly what we want: when our code
fails, it needs to fail as early and as spectacularly as possible. If
you rely on future you to have to manually check console output
or logs and look for errors, you deserve everything that’s going
to happen to you.

332



11.3. Turning our Rmds into a package

Under the section titled “Functions used for analysis”, I copy-
and-pasted the functions from the analyse_data.Rmd and docu-
mented them as well. What’s new is that I’ve added examples:

```{r examples-get_laspeyeres, eval = FALSE}
#' \dontrun{
#' country_level_data_laspeyeres <-

get_laspeyeres_index(country_level_data)↪

#' commune_level_data_laspeyeres <-
get_laspeyeres(commune_level_data)↪

#' }
```

But I don’t want these examples to run, I just want them to sim-
ply appear in the documentation. This is because, just like for
tests, examples have to be self-contained. So for this example to
run successfully, I would need to redefine commune_level_data
from scratch. I don’t want to do this now, so hence why I
wrapped the example around \dontrun and used roxygen-style
comments with #'. I did the same with the function to plot the
data.

We’re almost done; take a look again at the template
flat_minimal.Rmd. I advised you to take inspiration from it
to get save_data.Rmd fusen-ready. At the end of that file, we
can see this chunk:

```{r development-inflate, eval=FALSE}
Run but keep eval=FALSE to avoid infinite loop
Execute in the console directly
fusen::inflate(flat_file =

"dev/flat_minimal.Rmd",↪

vignette_name = "Minimal")

333

11. Packaging your code

```

This chunk contains the code that we need to run, manu-
ally, to inflate the package. However, I’ve removed it from
my save_data.Rmd file, and the reason is that I prefer to
have it inside the 0-dev_history.Rmd file. I think that
it makes more sense to have it there. Take a look at my
0-dev_history.Rmd here9. By reading that file, you see all the
different developer actions that were taken. Your team-mates,
or future you could read this, and immediately understand
what happened, and what was done. Under the section title
“Inflate save_data.Rmd”, you see that the chunk to inflate
the .Rmd file and generate the package is there. I can run
this chunk from 0-dev_history.Rmd and have my package
successfully generated. Something important to notice as well:
my fusen-ready .Rmd file is simply called save_data.Rmd, while
the generated, inflated file, that will be part of the package
under the vignettes/ folder is called dev-save_data.Rmd.

When you inflate a flat file into a package, the R console will
be verbose. This lists all files that are created or modified, but
there is also a long list of checks that run automatically. This
is the output of devtools::check() that is included inside
fusen::inflate(). This function verifies that your package,
once inflated, follows the rules of package development. This
will likely result in some fails, warnings and notes. Your goal is
to make it to 0 errors, 0 warnings, 0 notes. This will be
a tricky part while developing packages, as you may not under-
stand all outputs the first time. However, if you read the long
list carefully, you will see that you are helped in many ways:
position of the problems, type of problem,… Fix the problems
in the flat file, and inflate again, until the number of errors is

9https://is.gd/JsJJVN

334

https://is.gd/JsJJVN


11.4. Including datasets

0. I will not get deeper into this topic here, so you may want to
search for check() in https://r-pkgs.org10 to go further.

I suggest that you stop here, and really try to get this working.
You can start by simply cloning this repository11 I linked
in the beginning of this chapter, and follow along. After
inflating, take a look at the vignette generated from the
inflated dev-save_data.Rmd, which you can find under the
vignettes/ folder. One thing you need to understand is
that the save_data.Rmd file that you inflate, under dev/, is
a working file for developers. The generated vignette on the
other hand, can be read by stakeholders other than developers
as well. In my case, I’ve added the prefix dev- because this
vignette deals with preparing data for including in the package,
and there is not much point for a stakeholder other than
a developer to read this vignette. You will notice that the
generated vignette does not contain the function chunks. This
is normal, because after inflating the .Rmd file, the functions get
saved under the R/ folder. Really take some time to understand
this. Because what follows will assume that you have groked
{fusen}.

11.4. Including datasets

Another difference between our initial .Rmd and the fusen-ready
.Rmd, is that the fusen-ready save_data.Rmd file does not save
the datasets as .csv files anymore. This is because it is much
better to include them directly in the package, and make them
available to users by running the line:

10https://r-pkgs.org
11https://is.gd/jGZrMF

335

https://r-pkgs.org
https://github.com/b-rodrigues/housing


11. Packaging your code

data("commune_level_data")

To include data in a package, we need the package to already
be built; only once the package exists can we include data sets.
This is why we need to inflate save_data.Rmd first. So, how
do we include data sets in a package? If you are developing
packages in the usual manner (meaning, without {fusen}) then
you have to do the following steps:

• write a script that generates the data set (and save this
script inside the data-raw/ folder for future reference)

• save the datasets inside the data/ folder.

But we are using {fusen}, so instead, we can use the documenta-
tion first approach! And actually, the first step is done already:
we have our vignette save_data.Rmd! Let’s not forget that the
whole point of save_data.Rmd file was, initially, to build these
datasets and save them. So why not simply re-use this vignette?
If you take a look at the inflated dev-save_data.Rmd, you will
see that everything is right there! That’s obvious because that
was the Rmd file that we used to build the datasets in the first
place. So remember, we don’t want to have to repeat ourselves.
The vignette is right there with the code we need, so we are
going to use it.

If you look at 0-dev_history.Rmd, everything is explained un-
der the header “Including datasets”. The idea is to run the code
inside the vignette, which creates our datasets, and then save
these datasets in the right place using usethis::use_data(),
mimicking the steps from “traditional” package development. In
my 0-dev_history.Rmd here12, I wrapped all the code around
the local() function to run all these steps inside a temporary,
local environment. This way, any variable that gets made by
12https://is.gd/JsJJVN

336

https://is.gd/JsJJVN


11.5. Installing and sharing the package

knitting the vignette gets discarded once we’re done saving the
datasets. You may need to install your package before, using
remotes::install_local().

Finally, we need to document the datasets. For this, we use
another .Rmd file that we inflate as well. You can find it under
dev/data_doc.Rmd, or by clicking here13. Datasets get defined
inside chunks, just like functions, using {roxygen2}-type com-
ments.

This basically covers what you need to know to package code.
Of course, there are many other topics that we could discuss,
but for our purposes, this is enough. We now know how to
take advantage of the tools that make package development easy,
and have diverted them for our use. If you want to develop a
proper package and push it to CRAN, then I highly recommend
you read the second edition of R packages14 by Wickham and
Bryan (2023). This book goes into all the nitty-gritty details
of full package development. But let me be clear: this does
not mean that you cannot develop a full, CRAN-ready, package
using {fusen}. You absolutely can! It’s just that this is outside
the scope of the present book.

11.5. Installing and sharing the package

To install the package on the same machine that you developed
it, you can simply run the line remotes::install_local() on
line 46 of the 0-dev_history.Rmd file (ideally in a fresh R ses-
sion). But how can you share it with colleagues or future you?

13https://is.gd/wjkNAO
14https://r-pkgs.org/

337

https://is.gd/wjkNAO
https://r-pkgs.org/


11. Packaging your code

Now that the package is ready, you need to be able to share
it. This really depends on whether you can publish the code
on Github or not, or whether your company/institution has a
self-hosted version control system. In this section, we’re going
to explore the following two scenarios: the package is hosted on
Github (or in a private self-hosted version control system), or
the package cannot be hosted for whatever reason but you still
need to share the package.

11.5.1. Code is hosted

So if the code is hosted on Github (or on a self-hosted, pri-
vate, version control system), users of the package can install it
directly from Github. This can be done using the {remotes}
package, like this:

remotes::install_github(
"github_username/repository_name"

)

It is also possible to install the package from a specific branch:

remotes::install_github(
"github_username/repository_name@branch_name"

)

it is even possible to install the package exactly how it was at a
specific commit:

remotes::install_github(
"github_username/repository_name@branch_name",

338



11.5. Installing and sharing the package

ref = "commit_hash"
)

For example, if you want to install the package we have devel-
oped together from my Github account, you could run the fol-
lowing (the commit hash is actually wrong so you don’t install
this one by mistake):

remotes::install_github(
"rap4all/housing@fusen",
ref = "ae42601"

)

So the package in the fusen branch and at commit “ae42601”
gets installed. Keep in mind that you can specify the commit
hash to install the exact version you need, because this is going
to do wonders for reproducibility.

11.5.2. Code cannot be hosted

If the code cannot be hosted, then you have to share it
manually. That’s less than ideal, but sometimes there simply
is no alternative. In that case, you need to prepare a com-
pressed archive that you can share. This is easily done using
devtools::build(). Start a new session in the root directory
of you package, and run devtools::build(). This will create
a .tar.gz file that you can send to your teammates, or archive
for future you. Ideally, before creating this file, you should go
to 0-dev_history.Rmd and update the version number in the
fusen::fill_description() function, like so:

339



11. Packaging your code

```{r description, eval=FALSE}
fusen::fill_description(

pkg = here::here(),
fields = list(
Title = "Housing Data For Luxembourg",
Version = "0.1", # notice that I’ve added a
version number here↪

Description = "This package contains
functions to get,↪

clean and analyse housing
price data for Luxembourg.",↪

`Authors@R` = c(
person("Bruno", "Rodrigues", email =

"bruno@brodrigues.co",↪

role = c("aut", "cre"),
comment = c(ORCID =

"0000-0002-3211-3689"))↪

)
)

, overwrite = TRUE) # you need to add overwrite
= TRUE to overwrite the file↪

```

You have to be very disciplined here, because you have to make
sure that you keep updating this and documenting which version
of the package should get used for which project. Also, make
sure that you can store generated .tar.gz alongside the project
and that you provide clear installation instructions. To install a
package from a .tar.gz file, open a new R session and run the
following:

340



11.5. Installing and sharing the package

remotes::install_local(
"path/to/package/housing_0.0.0.9000.tar.gz"

)

11.5.3. Marketing your work

Once your package is done, whether it is destined for CRAN or
not, whether it can only be shared within your organisation or
not, it is important to market it and make it discoverable. This
is where building a website for the package is important, and
thankfully, it takes two lines of code to build a fully functioning
site. In the introduction we built the website for the template
included with {fusen}, let’s now build a website for our housing
package.

This website can then be hosted online if you wish, or it can
be shared internally to your organisation, offline, as a means of
providing documentation.

Take a look at the very last section of the 0-dev_history.Rmd
file, titled “Share the package”. If you execute the lines in that
chunk (ideally from a fresh R session), a website will be built
automatically. You can find the website’s files in the docs/
folder: open the index.html file using a web browser and you
can start navigating the documentation!

If your package is on Github, you can also host the website for
free on Github pages. For this, you can build the website locally
and send it to GitHub, or use GitHub Actions to build and
publish it automatically.

For the manual build, first make sure that the .gitignore file
in the root of your package does not contain the docs/ folder. If

341



11. Packaging your code

it does, remove it. Then, commit and push. This will upload the
docs/ package on Github. Then, go to the repository’s settings,
and “Pages” and then choose the branch that contains the docs/
folder:

Figure 11.2.: Choose these options to host your package’s web-
site for free!

For the automatic build, first make sure that the .gitignore
file in the root of your package does contain the docs/ folder, so
that you do not send your local verifications. Then go to your
0-dev_history.Rmd to run:

usethis::use_github_action("pkgdown")

Commit the .github/ directory with its yml files and push.
GitHub Action is a service that automatically runs following
instructions in the yml file, at each commit. When you commit
to the main or master branch, the website will be built. As

342



11.5. Installing and sharing the package

above, in the GitHub settings, you will need to define the root
of the gh-pages branch to be published as GitHub Pages. This
is called Continuous Integration and Continuous Deployment.
Note that you may want to set the other GitHub Actions listed
in the 0-dev_history.Rmd to make it check your package on a
different computer than yours. There is a chapter about CI/CD
later in this book.

As an example of the website, you can visit the website of the
package we’ve built together here15.

The package’s README will be shown, if available, on the starting
page of the website. So if you want to add a README to your
package, go to the 0-dev_history.Rmd file and execute the line
usethis::use_readme_rmd(), which adds a template README
file in the root of your package. Regardless of whether you want
to build a website, adding a README to it is always a good idea!
You could explain what the main features of the package are,
and how to install it, especially if you want your users or future
you to install the package at a certain commit, it is quite useful
to write it down clearly in the instructions. Something like:

To install this package, run the following lines
of code:↪

```
remotes::install_github("rap4all/housing@fusen",

ref = "ae42601")
```

You can also include the link to your website documentation.

15https://rap4all.github.io/housing/

343

https://rap4all.github.io/housing/


11. Packaging your code

11.6. Conclusion

Turning our analysis into a package is useful, because we can
divert a lot of tools that are originally intended for package
development towards improving our analysis. We can now more
easily document the code, define its dependencies, and also share
it with teammates, our future selves or the world. What’s more,
we clearly separate two tasks from each other: the pure software
engineering part, which consisted in building the package, from
the pure data analysis part, which will eventually become our
pipeline.

But turning the analysis into a package is optional; this is not
something that you absolutely have to do to turn your analysis
reproducible. However, the entry cost of package development
is really lowered thanks to {fusen} and the benefits are really
great, so I think that is important to do.

There is one chapter left before we actually build a full-fledged
pipeline. In the next chapter, we will learn how to use unit
and assertive testing to further improve the code of our package,
which will thus also improve the quality of our analysis.

344



12. Testing your code

Testing code is crucial, and we all do it in some form or another.
The problem is that it is not something that we do consistently:
usually code gets tested at the beginning of a project, but then,
as we start focusing on the analysis more and more and need to
respect deadlines, testing gets forgotten.

In this chapter, you are going to learn how to make testing your
code consistent and, very importantly, fully automatic. Just
like in the previous chapter, the key is to write everything down.
Don’t just do a little test in the console to see if the function
you’ve just written works as expected. Write it down! And don’t
rely on future you to run tests, because future you is just as unre-
liable as you are. Tests need to be run each time any of the code
from a project gets changed. This might seem overkill (why test
a function that you didn’t even touch for weeks?), but because
there are dependencies between your functions, a change in one
function can affect another function. Especially if the output
of function A is the input of function B: you changed function
A and now the output of function A changed in a way that it
breaks function B, or also modifies its output in an unexpected
way.

There are several types of tests that we can use:

• unit testing: these are written while developing, and exe-
cuted while developing;

345



12. Testing your code

• assertive testing: these are executed at runtime. These
make sure, for example, that the inputs a function receives
are sane.

Let’s start with unit testing.

12.1. Unit testing

Unit testing is the testing of units. What’s a unit? Functions
are units! We actually already encountered one unit test before,
in the save_data.Rmd script:

```{r tests-clean_flat_data}
We now need to check if we have them all in

the data.↪

The test needs to be self-contained, hence
why we need to redefine the required

variables:↪

former_communes <- get_former_communes()

current_communes <- get_current_communes()

communes <- get_test_communes(
former_communes,
current_communes

)

raw_data <- get_raw_data(url =
"https://is.gd/1vvBAc")↪

346

12.1. Unit testing

flat_data <- clean_raw_data(raw_data)

testthat::expect_true(
all(communes %in%

unique(flat_data$locality))↪

)
```

When using {fusen}, a unit test should be a self-contained
chunk that can be executed completely independently. This
is why in this chunk we re-created the different variables that
were needed, communes and flat_data. If you were developing
the package without {fusen}, you would need to do the same,
so don’t think that this is somehow a limitation of {fusen}.

The test above ensures that we find all the former and current
communes of Luxembourg in our dataset. Let me explain again
why we want to write such a test down in a script and not simply
try it out in our console “manually” to check if the code works.

For this test to pass, a lot of moving pieces have to fall together.
If anything changes, be it because you changed something in
either get_raw_data() or clean_raw_data() or because some-
thing changed with the Wikipedia tables you scraped, this test
will not pass. And you should be made aware of failures as soon
as possible! Also, this test ensures that when the data gets up-
dated, you are certain that if you use the code in save_data.Rmd
you will get a new dataset that is likely correct, even if new com-
munes merge. And mergers will happen around 2024 by the way,
the communes of Groussbous and Wal will merge, and the com-
munes of Bous and Waldbredimus as well. So you need to make
sure that when this happens, your code knows how to handle
this, or at least returns an error as early as possible.

347



12. Testing your code

Ideally, you need to test every function that you wrote, but
sometimes that’s not really possible, either due to lack of time,
or because the function is quite trivial, so maybe no test is war-
ranted. But be careful what you consider trivial though, I have
personally been bitten in the past by “trivially” simple functions!
For example, a function like this one:

```{r function-make_commune_level_data}
#' make_commune_level_data Makes the final data

at commune level↪

#'
#' @param flat_data Flat data df as returned by

clean_flat_data()↪

#' @importFrom dplyr filter
#' @return A data frame
#' @export
make_commune_level_data <- function(flat_data){

flat_data |>
filter(!grepl("nationale|offres", locality),

!is.na(locality))
}

```

might not need to be unit-tested. An assertion, which we will
learn about in the next section, is likely better suited to the
above function. However, as functions become more complex,
unit tests are highly recommended. This is because it can be-
come very difficult to make sure that changing some part of the
function somewhere does not affect some other part. This is
where writing several unit tests can be useful. As long as all
unit tests keep succeeding (or passing) you are somewhat sure
that what you’re doing is not breaking stuff. And unit tests are

348



12.1. Unit testing

especially useful when collaborating using trunk-based develop-
ment! As the project leader, you could for example refuse to
merge changes that break unit tests.

Before continuing, let’s rewrite the test we have already. While
it is fully working, I didn’t really write it in the canonical form.
Inside dev/save_data.Rmd, change the code of the test to the
following:

```{r tests-clean_flat_data}
We now need to check if we have them all in

the data.↪

The test needs to be self-contained, hence
why we need to redefine the required

variables:↪

former_communes <- get_former_communes()

current_communes <- get_current_communes()

communes <- get_test_communes(
former_communes,
current_communes

)

raw_data <- get_raw_data(url =
"https://is.gd/1vvBAc")↪

flat_data <- clean_raw_data(raw_data)

test_that("Check if all communes are accounted
for", {↪

349

12. Testing your code

expect_true(
all(communes %in%
unique(flat_data$locality))↪

)

})
```

The only difference is that instead of calling expect_true()
directly, I wrapped this call inside test_that(). This way, I
can add a description to the test. This is useful if the test
fails.

Save dev/save_data.Rmd and go back to 0-dev_history.Rmd
to inflate save_data.Rmd again. Everything should work with-
out problems.

If the test fails, you get an informative message. To illustrate,
I’ve added a typo in the test and inflated save_data.Rmd. Be-
cause tests always run when a fusen-package gets inflated, this
test failed and here is the output:

�� Failed tests ����������������������������������������������������������������
�� Error ('test-get_raw_data.R:18'): Check if all
communes are accounted for ���
Error in `communs %in% unique(flat_data$locality)`:
object 'communs' not found
Backtrace:

�
1. ��testthat::expect_true(all(communs %in%
unique(flat_data$locality)))

at test-get_raw_data.R:18:2
2. � ��testthat::quasi_label(enquo(object), label,
arg = "object")

350



12.1. Unit testing

3. � ��rlang::eval_bare(expr, quo_get_env(quo))
4. ��communs %in% unique(flat_data$locality)

[ FAIL 1 | WARN 2 | SKIP 0 | PASS 0 ]
Error: Test failures
Execution halted

The file test-get_raw_data.R contains our test, generated
by inflating save_data.Rmd. You can find it under the
tests/testthat/ folder of your inflated package. You can also
see the description that we’ve added, which helps us find the
test that failed. In cases like this, you should go back to the
function that makes the test fail and correct it, until the test
passes. You should also make sure that everything is alright
with the test itself. If there really is a typo in the test, you
should of course correct the test (in dev/save_data.Rmd, not
in tests/testthat/)!

Now, let’s add a unit test to another function, get_laspeyeres().
This function seems to me like a good candidate for testing, as
it is not that trivial.

Let’s try with something simple. get_laspeyeres() expects
either commune_level_data or country_level_data. What
happens if we provide another dataset? The function very
likely returns an error. So let’s test for this. Go back to the
save_data.Rmd file and add the following, under the function
definition of get_laspeyeres():

```{r tests-get_laspeyeres}
test_that("Wrong data", {

expect_error(
get_laspeyeres(mtcars)

351

12. Testing your code

)

})
```

Since we expect an error, we used expect_error(), which suc-
ceeds if the code fails! If you’re confused, no worries, we’ve all
been there. But let’s think about it: what would you want to
happen if you provided a wrong data set? Surely, you’d like for
the function to scream an error at you, and not somehow do
something and return something. So testing that functions fail
when they should is actually quite important as well. Let’s add
another, similar, test:

```{r tests-get_laspeyeres}

test_that("Wrong data", {

expect_error(
get_laspeyeres(mtcars)

)

})

test_that("Empty data", {

expect_error(
this subsetting results in an empty dataset
get_laspeyeres(subset(mtcars, am == 2))

)

})

352

12.1. Unit testing

```

This second test checks what happens if we provide an empty
dataset. This should not happen, but hey, it’s always a good
idea to see what could happen. Here we also expect an error, so
we use expect_error() as well. Inflating save_data.Rmd runs
the tests again, and all of them succeed.

Now, I know what you’re thinking. Probably something along
the lines of “Bruno, you told me that making my projects repro-
ducible and reliable and robust would not take much more time
than what I was already doing before. This certainly doesn’t feel
like it!”, to which I answer that your feelings on the issue are
wrong. It may not feel like it, but doing this does two things:

• It ultimately saves you time. You typed the test once, and
can now rerun it automatically every time you inflate the
.Rmd files. You don’t need to remember to test the code,
and don’t need to remember how to test the code.

• This saves you a lot of headaches. You don’t have to live
in fear that you might forget to test the code, or forget
how to test the code. You wrote the tests down, and now
you’re free to concentrate on adding features or using the
existing code knowing that you can trust its outputs.

Trust the process.

Let’s go back to the two tests from before: get_laspeyeres()
fails, as expected, when we provide a random dataset to it.
But it would be interesting to know why it fails. Simply run
get_laspeyeres(mtcars) in the console. This is what we get
back:

353



12. Testing your code

Error in `mutate()`:
! Problem while computing `p0 = ifelse(year ==
"2010",
average_price_nominal_euros, NA)`.

Caused by error in `ifelse()`:
! object 'year' not found
Run `rlang::last_error()` to see where the error
occurred.

So the functions fails but for the wrong reason. It fails because
the column year cannot be found in the data. But what if there
was a column year in the data? The code would continue, but
then likely fail for some other reason. It would be much safer to
make it fail as soon as possible, by detecting right from the start
if the provided data sets are not one of commune_level_data
or country_level_data. But for this, we need assertive pro-
gramming, which we will discuss in the next section. Why an
assertive test and not a unit test? Because unit tests should run
during development time, and assertive tests run at run-time
(when the function is executed). So in this case, we want the
input to get checked at run-time. In the next section, we will
be changing the function to fail when the right datasets are not
provided, but our unit test will not need to change; the function
still fails, but this time it’ll be for the right reasons.

This is another advantage of writing tests: it forces you to think
about what you’re doing. The simple act of thinking and writ-
ing tests very often improves your code quite a lot, and not just
from a pure algorithmic perspective, but also from a user ex-
perience perspective. Writing these tests made us think about
the failure of our function when users provide a wrong dataset
and made us realise that it would be much better for users
if the returned error message is something along the lines of
“Wrong dataset, please provide either commune_level_data or

354



12.1. Unit testing

country_level_data”.

Let’s continue with testing get_laspeyeres(). It would be
nice to see if the function actually does what it’s supposed to
do correctly. For this, we need to start from an input, and then
create the expected output. It doesn’t matter how you create
this output, what matters is that you make absolutely sure that
it is correct, and then, never touch it ever again. Let’s call
this output the “truth”. Then, you provide get_laspeyeres()
with this input and save the output that get_laspeyeres()
generates. You then compare the “truth” to this output. If
everything matches, congratulations, your function produces the
right output.

So let’s start. Remember that unit tests should be self-contained,
so I’m going to create the input dataset and the expected data
set (what I called the “truth”) in the test itself. This is the code
I’m going to use to create the mock, input dataset:

input_df <- expand.grid(
list("year" = c(2010, 2011),

"locality" = c("Bascharage",
"Luxembourg"))↪

)

input_df$n_offers <- c(123, 101, 1230, 1010)
input_df$average_price_nominal_euros <- c(234,

345, 560, 670)↪

input_df$average_price_m2_nominal_euros <- c(23,
34, 56, 67)↪

This creates a data frame with two years, two communes and
some mock prices. Now, I need to create the output. I start from
the input, and add the columns that get computed by running

355



12. Testing your code

get_laspeyeres() myself, “by hand”. Remember, you need to
make sure that these results are correct!

expected_df <- input_df

# p0 should be always equal to the value in the
first year↪

expected_df$p0 <- c(234, 234, 560, 560)
expected_df$p0_m2 <- c(23, 23, 56, 56)

# pl should be equal to the price divided by p0
expected_df$pl <-

expected_df$average_price_nominal_euros/
expected_df$p0 * 100

expected_df$pl_m2 <-
expected_df$average_price_m2_nominal_euros/
expected_df$p0_m2 * 100

If you look at each line, you see that this is exactly what
get_laspeyeres() does. We can inspect the results and maybe
even verify the value of each cell using a pocket calculator.
It doesn’t matter, what’s important is that expected_df is
correct and saved. This is what the full test looks like:

```{r, eval = F}
test_that("get_laspeyeres() produces correct

results", {↪

input_df <- expand.grid(
list("year" = c(2010, 2011),

356

12.1. Unit testing

"locality" = c("Bascharage",
"Luxembourg"))↪

)

input_df$n_offers <- c(123, 101, 1230, 1010)
input_df$average_price_nominal_euros <- c(234,
345, 560, 670)↪

input_df$average_price_m2_nominal_euros <-
c(23, 34, 56, 67)↪

expected_df <- input_df

p0 should be always equal to the value in
the first year↪

expected_df$p0 <- c(234, 234, 560, 560)
expected_df$p0_m2 <- c(23, 23, 56, 56)

pl should be equal to the price divided by
p0↪

expected_df$pl <-
expected_df$average_price_nominal_euros /
expected_df$p0 * 100

↪

↪

expected_df$pl_m2 <-
expected_df$average_price_m2_nominal_euros /
expected_df$p0_m2 * 100

↪

↪

expect_equivalent(
expected_df, get_laspeyeres(input_df)

)

})
```

357



12. Testing your code

Notice that I’ve used expect_equivalent() and not
expect_equal() to check if expected_df is equal to the
output of get_laspeyeres(input_df). This is because
expected_df is of class data.frame, while get_laspeyeres()
outputs a tibble. So if you use expect_equal() the test
would not pass, because the classes of both objects are not
strictly equal. Sometimes, this level of strictness is required,
but not always, as is the case here.

Once again, inflate save_data.Rmd. This will run the tests, and
if everything went well, you should end up, again, with a func-
tioning package. I highly advise that you consult {testthat}’s
documentation to learn about all the other functions that you
can use for writing unit tests.

If you’ve managed to write the unit tests and inflate the package
successfully, then let’s move on to assertive programming.

12.2. Assertive programming

Remember in Chapter 6, where I discussed safe functions? As a
refresher, here’s the nchar() function, providing a correct out-
put when the input is a character:

nchar("100000000")

[1] 9

and here is nchar() providing a surprising result when the input
is a number:

nchar(100000000)

358



12.2. Assertive programming

[1] 5

This is because 100000000 gets converted to 1e+08 and then this
gets converted into the string "1e+08" which is 5 characters long.
So in that section, I suggested defining your own nchar2() that
makes sure that the provided input is a character:

nchar2 <- function(x, result = 0){

if(!isTRUE(is.character(x))){
stop(paste0("x should be of type

'character', but is of type '",↪

typeof(x), "' instead."))
} else if(x == ""){
result

} else {
result <- result + 1
split_x <- strsplit(x, split = "")[[1]]
nchar2(paste0(split_x[-1],

collapse = ""), result)
}

}

This now returns an error if the input is a number, instead
of doing all these silent conversions. The technique we have
used here is what we call assertive programming. stop()
and stopifnot() are functions included with R that can be
used for assertive programming. Here is an example using
stopifnot():

nchar3 <- function(x, result = 0){

stopifnot("Input x must be a character" =

359



12. Testing your code

isTRUE(is.character(x)))

if(x == ""){
result

} else {
result <- result + 1
split_x <- strsplit(x, split = "")[[1]]
nchar3(paste0(split_x[-1],

collapse = ""), result)
}

}

If we go back to get_laspeyeres(), we should be using assertive
programming to make sure that the provided datasets are one
of commune_level_data or country_level_data. This is how
we could rewrite the function:

get_laspeyeres <- function(dataset){

which_dataset <- deparse(substitute(dataset))

stopifnot("dataset must be one of
`commune_level_data`↪

or `country_level_data`" =
(which_dataset %in% c(

"commune_level_data",
"country_level_data")))

group_var <- if(grepl("commune",
which_dataset)){↪

quo(locality)
} else {

360



12.2. Assertive programming

NULL
}

dataset |>
group_by(!!group_var) |>
mutate(
p0 = ifelse(

year == "2010",
average_price_nominal_euros,
NA)

) |>
fill(p0, .direction = "down") |>
mutate(
p0_m2 = ifelse(

year == "2010",
average_price_m2_nominal_euros,
NA)

) |>
fill(p0_m2, .direction = "down") |>
ungroup() |>
mutate(
pl = average_price_nominal_euros/p0*100,
pl_m2 =

average_price_m2_nominal_euros/p0_m2*100)↪

}

We can now also edit the unit test from before, the one where
we provide the wrong data. With this new specification of the
function, this unit test would still pass (the function returns
an error), as expected, but for the wrong reason. We now
want to make sure that it fails for the right reason, in other
words, that it fails not because no year column is found, but
because the provided data set is neither commune_level_data

361



12. Testing your code

nor country_level_data, so for this we change the unit tests
like this:

test_that("Wrong data", {

expect_error(
get_laspeyeres(mtcars),
regexp = "dataset must be one of"

)

})

I use the regexp argument of expect_error to enter a regu-
lar expression that matches the error message. So the string
“dataset must be one of” will match the message returned by
the error, and if they match (remember, the provided string is
a regular expression), then I know I get the correct error. Here
is what happens if I use the wrong message as the regex argu-
ment:

�� Failed tests ����������������������������������������������������������������
�� Failure ('test-get_laspeyeres.R:6'): Wrong data
�����������������������������
`get_laspeyeres(mtcars)` threw an error with
unexpected message.
Expected match: "message is wrong"
Actual message: "dataset must be one of
`commune_level_data`

or `country_level_data`"

So now, not only does our function fail for the right reasons, our
test is able to tell us that as well!

Before inflating to run these tests, you should also change the
test titled “get_laspeyeres() provides correct answers”. This

362



12.2. Assertive programming

is because the name of the input dataset used for the test is
input_df. So if you leave it like this, the assertion that we’ve
included in the function will make this test fail. So change this
test by simply saving input_df commune_level_data:

# rename data to make assertion pass
commune_level_data <- input_df

expect_equivalent(
expected_df,
get_laspeyeres(commune_level_data)↪

)

if you forget to do this, don’t worry, the unit test would not fail
to remind you!

Go back to 0-dev_history.Rmd and inflate the file again to
update it. Everything should work without any issues. If not,
take the time to make the unit tests pass and inflate the package
successfully!

Something else that is well-suited for assertive programming is
checking whether the provided inputs are of the right class:

any_function <- function(dataset){

stopifnot("`dataset` must be a data frame" =
inherits(dataset, "data.frame"))

print("No problem")
}

This will succeed:

363



12. Testing your code

any_function(mtcars)

[1] "No problem"

But this will fail:

any_function("this is not a data frame")

Error in any_function("this is not a data frame") :
`dataset` must be a data frame

inherits() checks if an object inherits from a certain class. So
for example, a tibble or a data.table that are classes that are
defined by inheriting attributes from the data.frame class, will
also successfully pass the test above. You can be as strict as you
need: for example, do you need any type of number? You could
do the following:

inherits(2, "numeric")

[1] TRUE

But do you actually need integers, and want to force this? Then
you could be stricter in your assertion:

inherits(2, "integer")

[1] FALSE

If you want the above to evaluate to TRUE, an integer must be
provided:

inherits(2L, "integer")

364



12.2. Assertive programming

[1] TRUE

Do you want, for some reason, that your functions only accept
tibbles and not data.frames? Be as strict as you need. This
will succeed:

inherits(tibble::as_tibble(mtcars), "tbl_df")

[1] TRUE

This will fail:

inherits(mtcars, "tbl_df")

[1] FALSE

You could also use more complex assertions. For example, sup-
pose that you need to clean data using many functions, with
several filters. Something could go wrong in any of these func-
tions for a variety of reasons. So each of these functions could
test if all the individuals are still in the data, and that you didn’t
remove any of them by mistake. A test like this could make sure
that each level of the variable am are still in the data:

summary_stats <- function(dataframe, var){
stopifnot("Some individuals are missing!" =

all((unique(dataframe[[var]]))
%in% c(0,1)))↪

# and then some computations here
}

365



12. Testing your code

Now, when running summary_stats(mtcars, "am"), if some-
how the level “1” or “0” is missing from mtcars, the function
would throw an error.

There are several packages for assertive programming that you
might want to check out:

• {assertthat}1

• {chk}2

• {checkmate}3

I won’t discuss any of them; what’s important is for you to know
that assertive programming is something that is useful and that
you should add to your toolbox.

12.3. Test-driven development

Test-driven development, or TDD, is the programming paradigm
in which instead of writing a function and then several tests to
ensure that the code is working as expected, you start by writing
tests, and then the function. Of course, since there is no function
to test, these tests will all obviously fail at first. But the goal is
to then write a function such that the tests pass.

TDD is interesting in at least two scenarios:

• You want to write a function, but don’t know exactly
where to start. Maybe it’s a very complex function. So
writing tests can help you think about it, and already fix
certain properties that this function should have.

1https://github.com/hadley/assertthat
2https://poissonconsulting.github.io/chk/
3https://mllg.github.io/checkmate/

366

https://github.com/hadley/assertthat
https://poissonconsulting.github.io/chk/
https://mllg.github.io/checkmate/


12.4. Code coverage

• You use the tests as a way to write requirements for a
code-base. This can be useful when working in a team,
and you don’t want to “waste” time writing requirements,
so instead you write tests that describe how the function
should work, what type of inputs get accepted, how its
output looks like… Careful though, because a “smart” pro-
grammer could write code that passes the tests but doesn’t
actually do anything otherwise useful.

I tend to use TDD when I need to write a function but don’t
quite know where to start. I start by writing the most basic
tests and make them ever more complicated. At some point, I
start having an idea for the function’s implementation and have
a go at it.

Some programmers only do TDD; so they start by writing many,
many tests, and then only start writing their functions. Person-
ally, I think that this is also not ideal, because you could waste
a lot of time writing meaningless tests.

12.4. Code coverage

It is useful to have an idea of which functions are tested and
which are not, but also how much of a function is being tested.
For example, suppose that you have an if...else... clause
somewhere in a function. Did you write a test for each of the
outcomes of this clause? Maybe you only wrote a test when this
clause evaluates to TRUE, but forgot to write a test for the case
it is FALSE.

The packages {covr} allows you to track the test coverage of
your package. Install {covr} and run report() in the console
to get the results:

367



12. Testing your code

covr::report()

This should open a tab in your web browser with some statistics.
You can click on the individual scripts to see the source code of
your functions: each line that is highlighted in green represents
a line that is being tested, and lines in red are lines that are not
being tested:

Figure 12.1.: The output of report() inside a web browser.

You could strive to get 100% coverage by painting all the lines
green (by writing unit tests that test these lines). But in practice,
it is not always so easy to get 100% coverage, so don’t fret if you
don’t achieve perfection.

If you’re working on a server (and thus do not have ac-
cess to a graphical user interface) you can instead use the

368



12.5. Conclusion

covr::package_coverage() function which provides you with
the following results (printed in the console):

housing Coverage: 73.33%
R/get_laspeyeres.R: 57.14%
R/get_raw_data.R: 80.65%

The percentage represents the share of lines of code that are
tested by our unit tests. We see that the share of lines being
tested in get_laspeyeres.R is 57%: this is because the script
get_laspeyeres.R contains two functions, get_laspeyeres()
and make_plot(). We do not test make_plot() at all, hence
why the percentage is so low. We could move make_plot() to
another script by simply putting the function under a level two
header in the original .Rmd file and then inflating again. But
in any case, this would not improve the overall coverage of the
package; we would ideally need to write a test for make_plot().
This is left as an exercise to the reader.

12.5. Conclusion

Testing is crucial and useful. Not just because it gives you peace
of mind but also because writing tests forces you to think about
your code, by putting yourself in the shoes of your users (which
include future you as well). In most cases, it is even something
that you’ve been doing but perhaps not as systematically as you
should.

There really is no other way to say this: you need to consider
writing tests as an integral part of the project, and need to take
the required time it takes to write them into account when plan-
ning projects. But keep in mind that writing them makes you
gain a lot of time in the long run, so actually, you might even be

369



12. Testing your code

faster by writing tests! Tests also allow you to immediately see
where something went wrong, when something goes wrong. So
tests save you time here as well. Without tests, when something
goes wrong, you have a hard time finding where the bug comes
from, and end up wasting precious time. And worse, sometimes
things go wrong and break, but silently. You still get an output
that may look ok at first glance, and only realise something is
wrong way too late. Testing helps to avoid such situations.

So remember: it might feel like packaging your code and writ-
ing tests for it takes time, but you’re actually already doing it,
but non-systematically and manually and it ends up saving you
time in the long run instead. Testing also helps with developing
complex functions.

The tools I’ve shown you in this and the previous chapter are
probably the fastest, easiest options to go from your analysis to
a documented and tested package in a matter of hours. The
benefits these provide however are measured in days of work.

370



13. Build automation with
targets

We are finally ready to actually build a pipeline. For this, we
are going to be using a package called {targets} (Landau 2021)
which is a so-called “build automation tool”.

If you go back to the reproducibility iceberg, you will see that
we are quite low now.

Without a build automation tool, a pipeline is nothing but a
series of scripts that get called one after the other, or perhaps
the pipeline is only one very long script that does the required
operations successfully.

There are several problems with this approach, so let’s see how
build automation can help us.

13.1. Introduction

Script-based workflows are problematic for several reasons. The
first is that scripts can, and will, be executed out of order. You
can mitigate some of the problems this can create by using pure
functions, but you still need to make sure not to run the scripts
out of order. But what does that actually mean? Well, suppose
that you changed a function, and only want to re-execute the

371



13. Build automation with targets

parts of the pipeline that are impacted by that change. But this
supposes that you can know, in your head, which part of the
script was impacted and which was not. And this can be quite
difficult to figure out, especially when the pipeline is huge. So
you will run certain parts of the script, and not others, in the
hope that you don’t need to re-run everything.

Another issue is that pipelines written as scripts are usually quite
difficult to read and understand. To mitigate this, what you’d
typically do is write a lot of comments. But here again you face
the problem of needing to maintain these comments, and once
the comments and the code are out of synch… the problems start
(or rather, they continue).

Running the different parts of the pipeline in parallel is also very
complicated if your pipeline is defined as script. You would need
to break the script into independent parts (and make really sure
that these parts are independent) and execute them in parallel,
perhaps using a separate R session for each script. The good
news is that if you followed the advice from this book you have
been using functional programming and so your pipeline is a
series of pure function calls, which simplifies running the pipeline
in parallel.

But by now you should know that software engineers also faced
similar problems when they needed to build their software, and
you should also suspect that they likely came up with something
to alleviate these issues. Enter build automation tools.

When using a build automation tool, what you end up doing is
writing down a recipe that defines how the source code should
be “cooked” into the software (or in our case, a report, a cleaned
dataset or any data product).

The build automation tool then tracks:

372



13.2. {targets} quick-start

• any change in any of the code. Only the outputs that are
affected by the changes you did will be re-computed (and
their dependencies as well);

• any change in any of the tracked files. For example, if a
file gets updated daily, you can track this file and the build
automation tool will only execute the parts of the pipeline
affected by this update;

• which parts of the pipeline can safely run in parallel (with
the option to thus run the pipeline on multiple CPU cores).

Just like many of the other tools that we have encountered in
this book, what build automation tools do is allow you to not
have to rely on your brain. You write down the recipe once, and
then you can focus again on just the code of your actual project.
You shouldn’t have to think about the pipeline itself, nor think
about how to best run it. Let your computer figure that out for
you, it’s much better at such tasks than you.

13.2. {targets} quick-start

First thing’s first: to know everything about the {targets}
package, you should read the excellent {targets} manual1. Ev-
erything’s in there. So what I’m going to do is really just give
you a very quick intro to what I think are really the main points
you should know about to get started.

Let’s start with a “hello-world” type pipeline. Create a new
folder called something like targets_intro/, and start a fresh
R session in it. For now, let’s ignore {renv}. We will see how
{renv} works together with {targets} to provide an (almost

1https://is.gd/VS6vSs

373

https://books.ropensci.org/targets/


13. Build automation with targets

reproducible) pipeline later. In that fresh session inside the
targets_intro/ run the following line:

targets::tar_script()

this will create a template _targets.R file in that directory.
This is the file in which we will define our pipeline. Open it in
your favourite editor. A _targets.R pipeline is roughly divided
into three parts:

• first is where packages are loaded and helper functions are
defined;

• second is where pipeline-specific options are defined;
• third is the pipeline itself, defined as a series of targets.

Let’s go through all these parts one by one.

13.2.1. _targets.R’s anatomy

The first part of the pipeline is where packages and helper
functions get loaded. In the template, the very first line is a
library(targets) call followed by a function definition. There
are two important things here that you need to understand.

If your pipeline needs, say, the {dplyr} package to run, you
could write library(dplyr) right after the library(targets)
call. However, it is best to actually do as in the template,
and load the packages using tar_option_set(packages =
"dplyr"). This is because if you execute the pipeline in parallel,
you need to make sure that all the packages are available to
all the workers (typically, one worker per CPU core). If you
load the packages at the top of the _targets.R script, the
packages will be available for the original session that called

374



13.2. {targets} quick-start

library(...), but not to any worker sessions spawned for
parallel execution.

So, the idea is that at the very top of your script, you only
load the {targets} library and other packages that are required
for running the pipeline itself (as we shall see in coming sec-
tions). But packages that are required by functions that are
running inside the pipeline should ideally be loaded as in the
template. Another way of saying this: at the top of the script,
think “pipeline infrastructure” packages ({targets} and some
others), but inside tar_option_set() think “functions that run
inside the pipeline” packages.

Part two is where you set some global options for the pipeline.
As discussed previously, this is where you should load packages
that are required by the functions that are called inside the
pipeline. I won’t list all the options here, because I would simply
be repeating what’s in the documentation2. This second part is
also where you can define some functions that you might need
for running the pipeline. For example, you might need to define
a function to load and clean some data: this is where you would
do so. We have developed a package, so we do not need such a
function, we will simply load the data from the package directly.
But sometimes your analysis doesn’t require you to write any
custom functions, or maybe just a few, and perhaps you don’t
see the benefit of building a package just for one or two functions.
So instead, you have two other options: you either define them
directly inside the _targets.R script, like in the template, or
you create a functions/ folder next to the _targets.R script,
and put your functions there. It’s up to you, but I prefer this
second option. In the example script, the following function is
defined:

2https://is.gd/lm4QoO

375

https://docs.ropensci.org/targets/reference/tar_option_set.html


13. Build automation with targets

summarize_data <- function(dataset) {
colMeans(dataset)

}

Finally, comes the pipeline itself. Let’s take a closer look at it:

list(
tar_target(data,

data.frame(x = sample.int(100),
y = sample.int(100))),

tar_target(data_summary,
summarize_data(data)) # Call your

custom functions.↪

)

The pipeline is nothing but a list (told you lists were a very
important object) of targets. A target is defined using the
tar_target() function and has at least two inputs: the first
is the name of the target (without quotes) and the second is
the function that generates the target. So a target defined as
tar_target(y, f(x)) can be understood as y <- f(x). The
next target can use the output of the previous target as an
input, so you could have something like tar_target(z, f(y))
(just like in the template).

13.3. A pipeline is a composition of pure
functions

You can run this pipeline by typing tar_make() in a console:

376



13.3. A pipeline is a composition of pure functions

targets::tar_make()

• start target data
• built target data [0.82 seconds]
• start target data_summary
• built target data_summary [0.02 seconds]
• end pipeline [1.71 seconds]

The pipeline is done running! So, now what? This pipeline sim-
ply built some summary statistics, but where are they? Typing
data_summary in the console to try to inspect this output results
in the following:

data_summary

Error: object 'data_summary' not found

What is going on?

First, you need to remember our chapter on functional program-
ming. We want our pipeline to be a sequence of pure func-
tions. This means that our pipeline running successfully should
not depend on anything in the global environment (apart from
loading the packages in the first part of the script, and the op-
tions set with tar_option_set() for the others) and it should
not change anything outside of its scope. This means that the
pipeline should not change anything in the global environment
either. This is exactly how a {targets} pipeline operates. A
pipeline defined using {targets} will be pure and so the out-
put of the pipeline will not be saved in the global environment.
Now, strictly speaking, the pipeline is not exactly pure. Check
the folder that contains the _targets.R script. There should

377



13. Build automation with targets

now be a _targets/ folder in there as well. If you go inside that
folder, and then open the objects/ folder, you should see two
objects, data and data_summary. These are the outputs of our
pipeline.

So each target that is defined inside the pipeline gets saved there
in the .rds format. This is an R-specific format that you can use
to save any type of object. It doesn’t matter what it is: a simple
data frame, a fitted model, a ggplot, whatever, you can write any
R object to disk in this format using the saveRDS() function,
and then read it back into another R session using readRDS().
{targets} makes use of these two functions to save every target
computed by your pipeline, and simply retrieves them from the
_targets/ folder instead of recomputing them. Keep this in
mind if you use Git to version the code of your pipeline (which
you are doing of course), and add the _targets/ folder to the
.gitignore (unless you really want to also version it, but it
shouldn’t be necessary).

So because the pipeline is pure, and none of its outputs get
saved into the global environment, calling data_summary
results in the error above. So to retrieve the outputs you
should use tar_read() or tar_load(). The difference is that
tar_read() simply reads the output and shows it in the console
but tar_load() reads and saves the object into the global
environment. So to retrieve our data_summary object let’s use
tar_load(data_summary):

tar_load(data_summary)

Now, typing data_summary shows the computed output:

data_summary

378



13.3. A pipeline is a composition of pure functions

x y
50.5 50.5

It is possible to load all the outputs using tar_load_everything()
so that you don’t need to load each output one by one.

Before continuing with more {targets} features, I want to re-
ally stress the fact that the pipeline is the composition of pure
functions. So functions that only have a side-effect will be dif-
ficult to handle. Examples of such functions are functions that
read data, or that print something to the screen. For example,
plotting in base R consists of a series of calls to functions with
side-effects. If you open an R console and type plot(mtcars),
you will see a plot. But the function plot() does not create
any output. It just prints a picture on your screen, which is a
side-effect. To convince yourself that plot() does not create
any output and only has a side-effect, try to save the output of
plot() in a variable:

a <- plot(mtcars)

doing this will show the plot, but if you then call a, the plot will
not appear, and instead you will get NULL:

a

NULL

This is also why saving plots in R is awkward, it’s because there’s
no object to actually save!

So because plot() is not a pure function, if you try to use it
in a {targets} pipeline, you will get NULL as well when loading

379



13. Build automation with targets

the target that should be holding the plot. To see this, change
the list of targets like this:

list(
tar_target(data,

data.frame(x = sample.int(100),
y = sample.int(100))),

tar_target(data_summary,
summarize_data(data)), # Call your

custom functions.↪

tar_target(
data_plot,
plot(data)

)
)

I’ve simply added a new target using tar_target() at the end,
to generate a plot. Run the pipeline again using tar_make() and
then type tar_load(data_plot) to load the data_plot target.
But typing data_plot only shows NULL and not the plot!

There are several workarounds for this. The first is to use
ggplot() instead. This is because the output of ggplot() is
an object of type ggplot. You can do something like a <-
ggplot() + etc... and then type a to see the plot. Doing
str(a) also shows the underlying list holding the structure of
the plot, as a list.

The second workaround is to save the plot to disk. For this, you
need to write a new function, for example:

380



13.3. A pipeline is a composition of pure functions

save_plot <- function(filename, ...){

png(filename = filename)
plot(...)
dev.off()

}

If you put this in the _targets.R script, before defining the list
of tar_target objects, you could use this instead of plot() in
the last target:

summarize_data <- function(dataset) {
colMeans(dataset)

}

save_plot <- function(filename, ...){
png(filename = filename)
plot(...)
dev.off()

filename
}

# Set target-specific options such as packages.
tar_option_set(packages = "dplyr")

# End this file with a list of target objects.
list(

tar_target(data,
data.frame(x = sample.int(100),

y = sample.int(100))),

381



13. Build automation with targets

tar_target(data_summary,
summarize_data(data)), # Call your

custom functions.↪

tar_target(
data_plot,
save_plot(
filename = "my_plot.png",
data),

format = "file")
)

After running this pipeline you should see a file called
my_plot.png in the folder of your pipeline. If you type
tar_load(data_plot), and then data_plot you will see that
this target returns the filename argument of save_plot().
This is because a target needs to return something, and in the
case of functions that save a file to disk returning the path
where the file gets saved is recommended. This is because
if I then need to use this file in another target, I could do
tar_target(x, f(data_plot)). Because the data_plot tar-
get returns a path, I can write f() in such a way that it knows
how to handle this path. If instead I write tar_target(x,
f("path/to/my_plot.png")), then {targets} would have
no way of knowing that the target x depends on the target
data_plot. The dependency between these two targets would
break. Hence why the first option is preferable.

Finally, you will have noticed that the last target also has the
option format = "file". This will be topic of the next sec-
tion.

It is worth noting that the {ggplot2} package includes a func-

382



13.4. Handling files

tion to save ggplot objects to disk called ggplot2::ggsave().
So you could define two targets, one to compute the ggplot ob-
ject itself, and another to generate a .png image of that ggplot
object.

13.4. Handling files

In this section, we will learn how {targets} handles files.
First, run the following lines in the folder that contains the
_targets.R script that we’ve been using up until now:

data(mtcars)

write.csv(mtcars,
"mtcars.csv",
row.names = F)

This will create the file "mtcars.csv" in that folder. We are
going to use this in our pipeline.

Write the pipeline like this:

list(
tar_target(
data_mtcars,
read.csv("mtcars.csv")

),

tar_target(
summary_mtcars,
summary(data_mtcars)

383



13. Build automation with targets

),

tar_target(
plot_mtcars,
save_plot(
filename = "mtcars_plot.png",
data_mtcars),

format = "file")
)

You can now run the pipeline and will get a plot at the end.
The problem however, is that the input file "mtcars.csv" is not
being tracked for changes. Try to change the file, for example
by running this line in the console:

write.csv(head(mtcars), "mtcars.csv", row.names
= F)↪

If you try to run the pipeline again, our changes to the data are
ignored:

� skip target data_mtcars
� skip target plot_mtcars
� skip target summary_mtcars
� skip pipeline [0.1 seconds]

As you can see, because {targets} is not tracking the changes
in the mtcars.csv file, from its point of view nothing changed.
And thus the pipeline gets skipped because according to
{targets}, it is up-to-date.

Let’s change the csv back:

384



13.4. Handling files

write.csv(mtcars, "mtcars.csv", row.names = F)

and change the first target such that the file gets tracked. Re-
member that targets need to be pure functions and return some-
thing. So we are going to change the first target to simply re-
turn the path to the file, and use the format = "file" option
in tar_target():

path_data <- function(path){
path

}

list(
tar_target(
path_data_mtcars,
path_data("mtcars.csv"),
format = "file"

),
tar_target(
data_mtcars,
read.csv(path_data_mtcars)

),
tar_target(
summary_mtcars,
summary(data_mtcars)

),
tar_target(
plot_mtcars,
save_plot(filename = "mtcars_plot.png",

data_mtcars),
format = "file")

)

385



13. Build automation with targets

To drive the point home, I use a function called path_data()
which takes a path as an input and simply returns it. This
is totally superfluous, and you could define the target like this
instead:

tar_target(
path_data_mtcars,
"mtcars.csv",
format = "file"

)

This would have exactly the same effect as using the
path_data() function.

So now we got a target called path_data_mtcars that returns
nothing but the path to the data. But because we’ve used the
format = "file" option, {targets} now knows that this is a
file that must be tracked. So any change on this file will be
correctly recognised and any target that depends on this input
file will be marked as being out-of-date. The other targets are
exactly the same.

Run the pipeline now using tar_make(). Now, change the input
file again:

write.csv(head(mtcars),
"mtcars.csv",
row.names = F)

Now, run the pipeline again using tar_make(): this time you
should see that {targets} correctly identified the change and
runs the pipeline again accordingly!

386



13.5. The dependency graph

13.5. The dependency graph

As you’ve seen in the previous section (and as I told you in
the introduction) {targets} keeps track of changes in files, but
also in the functions that you use. Any change to the code of
any of these functions will result in {targets} identifying which
targets are now out-of-date and which should be re-computed
(alongside any other target that depends on them). It is pos-
sible to visualise this using tar_visnetwork(). This opens an
interactive network graph in your web browser that looks like
this:

Figure 13.1.: This image opens in your web-browser.

In the image above, each target has been computed, so they are
all up-to-date. If you now change the input data, here is what
you will see instead:

387



13. Build automation with targets

Figure 13.2.: Because the input data was changed, we need to
run the pipeline again.

Because all the targets depend on the input data, we need to
re-run everything. Let’s run the pipeline again to update all the
targets using tar_make() before continuing.

Now let’s add another target to our pipeline, one that does not
depend on the input data. Then, we will modify the input data
again, and call tar_visnetwork() again. Change the pipeline
like so:

list(
tar_target(
path_data_mtcars,
"mtcars.csv",

388



13.5. The dependency graph

format = "file"
),
tar_target(
data_iris,
data("iris")

),
tar_target(
summary_iris,
summary(data_iris)

),
tar_target(
data_mtcars,
read.csv(path_data_mtcars)

),
tar_target(
summary_mtcars,
summary(data_mtcars)

),
tar_target(
plot_mtcars,
save_plot(
filename = "mtcars_plot.png",
data_mtcars),

format = "file")
)

Before running the pipeline, we can call tar_visnetwork()
again to see the entire workflow:

389



13. Build automation with targets

Figure 13.3.: We clearly see that the pipeline has two completely
independent parts.

We can see that there are now two independent parts, as well as
two unused functions, path_data() and summ() which we could
remove.

Running the pipeline using tar_make() builds everything suc-
cessfully. Let’s add the following target, just before the very last
one:

tar_target(
list_summaries,
list(
"summary_iris" = summary_iris,
"summary_mtcars" = summary_mtcars

)

390



13.6. Running the pipeline in parallel

),

This target creates a list with the two summaries that we com-
pute. Call tar_visnetwork() again:

Figure 13.4.: The two separate workflows end up in one output.

Finally, run the pipeline one last time to compute the final out-
put.

13.6. Running the pipeline in parallel

{targets} makes it easy to run independent parts of our
pipeline in parallel. In the example from before, it was quite
obvious to know which parts were independent, but when the
pipeline grows in complexity, it can be very difficult to see
which parts are independent.

391



13. Build automation with targets

Let’s now run the example from before in parallel. But
first, we need to create a function that takes some time to
run. summary() is so quick that running both of its calls in
parallel is not worth it (and would actually even run slower,
I’ll explain why at the end). Let’s define a new function called
slow_summary():

slow_summary <- function(...){
Sys.sleep(30)
summary(...)

}

and replace every call to summary() with slow_summary() in
the pipeline:

list(
tar_target(
path_data_mtcars,
"mtcars.csv",
format = "file"

),
tar_target(
data_iris,
data("iris")

),
tar_target(
summary_iris,
slow_summary(data_iris)

),
tar_target(
data_mtcars,
read.csv(path_data_mtcars)

392



13.6. Running the pipeline in parallel

),
tar_target(
summary_mtcars,
slow_summary(data_mtcars)

),
tar_target(
list_summaries,
list(
"summary_iris" = summary_iris,
"summary_mtcars" = summary_mtcars

)
),
tar_target(
plot_mtcars,
save_plot(filename = "mtcars_plot.png",

data_mtcars),
format = "file")

)

here’s what the pipeline looks like before running:

393



13. Build automation with targets

Figure 13.5.: slow_summary() is used instead of summary().

(You will also notice that I’ve removed the unneeded functions,
path_data() and summ()).

Running this pipeline sequentially will take about a minute, be-
cause each call to slow_summary() takes 30 seconds. To re-run
the pipeline completely from scratch, call tar_destroy(). This
will make all the targets outdated. Then, run the pipeline from
scratch with tar_make():

targets::tar_make()

• start target path_data_mtcars
• built target path_data_mtcars [0.18 seconds]
• start target data_iris
• built target data_iris [0 seconds]
• start target data_mtcars

394



13.6. Running the pipeline in parallel

• built target data_mtcars [0 seconds]
• start target summary_iris
• built target summary_iris [30.26 seconds]
• start target plot_mtcars
• built target plot_mtcars [0.16 seconds]
• start target summary_mtcars
• built target summary_mtcars [30.29 seconds]
• start target list_summaries
• built target list_summaries [0 seconds]
• end pipeline [1.019 minutes]

Since computing summary_iris is completely independent of
summary_mtcars, these two computations could be running
at the same time on two separate CPU cores. To do this,
we need to first load two additional packages, {future} and
{future.callr} at the top of the script. Then, we also need
to call plan(callr) before defining our pipeline. Here is what
the complete _targets.R looks like:

library(targets)
library(future)
library(future.callr)
plan(callr)

# Sometimes you gotta take your time
slow_summary <- function(...) {

Sys.sleep(30)
summary(...)

}

# Save plot to disk
save_plot <- function(filename, ...){

395



13. Build automation with targets

png(filename = filename)
plot(...)
dev.off()

filename
}

# Set target-specific options such as packages.
tar_option_set(packages = "dplyr")

list(
tar_target(
path_data_mtcars,
"mtcars.csv",
format = "file"

),
tar_target(
data_iris,
data("iris")

),
tar_target(
summary_iris,
slow_summary(data_iris)

),
tar_target(
data_mtcars,
read.csv(path_data_mtcars)

),
tar_target(
summary_mtcars,
slow_summary(data_mtcars)

),

396



13.6. Running the pipeline in parallel

tar_target(
list_summaries,
list(
"summary_iris" = summary_iris,
"summary_mtcars" = summary_mtcars

)
),
tar_target(
plot_mtcars,
save_plot(
filename = "mtcars_plot.png",
data_mtcars),

format = "file")
)

You can now run this pipeline in parallel using tar_make_future()
(and sequentially as well, just as usual with tar_make()). To
run the pipeline from scratch to test this, call tar_destroy()
and then tar_make() will build the entire pipeline from
scratch:

397



13. Build automation with targets

# Set workers = 2 to use 2 cpu cores
targets::tar_make_future(workers = 2)

• start target path_data_mtcars
• start target data_iris
• built target path_data_mtcars [0.2 seconds]
• start target data_mtcars
• built target data_iris [0.22 seconds]
• start target summary_iris
• built target data_mtcars [0.2 seconds]
• start target plot_mtcars
• built target plot_mtcars [0.35 seconds]
• start target summary_mtcars
• built target summary_iris [30.5 seconds]
• built target summary_mtcars [30.52 seconds]
• start target list_summaries
• built target list_summaries [0.21 seconds]
• end pipeline [38.72 seconds]

As you can see, this was faster but not quite twice as fast, but
almost. The reason this isn’t exactly twice as fast is because
there is some overhead to run code in parallel. New R sessions
have to be spawned by {targets}, data needs to be transferred
and packages must be loaded in these new sessions. This is why
it’s only worth parallelizing code that takes some time to run. If
you decrease the number of sleep seconds in slow_summary(...)
(for example to 10), running the code in parallel might be slower
than running the code sequentially, because of that overhead.
But if you have several long-running computations, it’s really
worth the very small price that you pay for the initial setup. Let
me re-iterate again that in order to run your pipeline in parallel,
the extra worker sessions that get spawned by {targets} need

398



13.7. {targets} and RMarkdown (or Quarto)

to know which packages they need to load, which is way you
should load the packages your pipeline needs using:

tar_option_set(packages = "dplyr")

13.7. {targets} and RMarkdown (or
Quarto)

It is also possible to compile documents using RMardown (or
Quarto) with {targets}. The way this works is by setting up
a pipeline that produces the outputs you need in the document,
and then defining the document as a target to be computed as
well. For example, if you’re showing a table in the document,
create a target in the pipeline that builds the underlying data.
Do the same for a plot, or a statistical model. Then, in the
.Rmd (or .Qmd) source file, use targets::tar_read() to load
the different objects you need.

Consider the following _targets.R file:

library(targets)

tar_option_set(packages = c("dplyr", "ggplot2"))

list(
tar_target(
path_data_mtcars,
"mtcars.csv",
format = "file"

),

399



13. Build automation with targets

tar_target(
data_mtcars,
read.csv(path_data_mtcars)

),
tar_target(
summary_mtcars,
summary(data_mtcars)

),
tar_target(
clean_mtcars,
mutate(data_mtcars,

am = as.character(am))
),
tar_target(
plot_mtcars,
{ggplot(clean_mtcars) +

geom_point(aes(y = mpg,
x = hp,
shape = am))}

)
)

This pipeline loads the .csv file from before and creates a sum-
mary of the data as well as plot. But we don’t simply want
these objects to be saved as .rds files by the pipeline, we want
to be able to use them to write a document (either in the .Rmd
or .Qmd format). For this, we need another package, called
{tarchetypes}. This package comes with many functions that
allow you to define new types of targets (these functions are
called target factories in {targets} jargon). The new target
factory that we need is tarchetypes::tar_render(). As you
can probably guess from the name, this function renders an .Rmd
file. Write the following lines in an .Rmd file and save it next to

400



13.7. {targets} and RMarkdown (or Quarto)

the pipeline:

---
title: "mtcars is the best data set"
author: "mtcars enjoyer"
date: today
---

## Load the summary

```{r}
tar_read(summary_mtcars)
```

Here is the _targets.R file again, where I now load
{tarchetypes} at the top and add a new target at the
bottom:

library(targets)
library(tarchetypes)

tar_option_set(packages = c("dplyr", "ggplot2"))

list(
tar_target(
path_data_mtcars,
"mtcars.csv",
format = "file"

),
tar_target(
data_mtcars,
read.csv(path_data_mtcars)

401



13. Build automation with targets

),
tar_target(
summary_mtcars,
summary(data_mtcars)

),
tar_target(
clean_mtcars,
mutate(data_mtcars,

am = as.character(am))
),
tar_target(
plot_mtcars,
{ggplot(clean_mtcars) +

geom_point(aes(y = mpg,
x = hp,
shape = am))}

),
tar_render(
my_doc,
"my_document.Rmd"

)
)

Running this pipeline with tar_make() will now compile the
source .Rmd file into an .html file that you can open in your
web-browser. Even if you want to compile the document into
another format, I advise you to develop using the .html format.
This is because you can open the .html file in the web-browser,
and keep working on the source. Each time you run the pipeline
after you made some changes to the file, you simply need to
refresh the web-browser to see your changes. If instead you
compile a Word document, you will need to always close the
file, and then re-open it to see your changes, which is quite

402



13.7. {targets} and RMarkdown (or Quarto)

annoying. A good second reason to have output in the .html
format is that HTML is a text-only format, and thus can be
tracked with version control systems covered in Chapter 5. The
MS Word format is binary, and tracking it in Git is always an
undecipherable mess. Keep in mind though that .html files can
get large, in which case you may want to not track them, but
only track the source .Rmd instead.

If you open the output file, you should be seeing something quite
plain looking:

Figure 13.6.: The output of our pipeline. Our first data product!

Don’t worry, we will make it look nice, but right at the end.
Don’t waste time making things look good too early on. Ideally,
try to get the pipeline to run on a simple example, and then keep
adding features. Also, try to get as much feedback as possible on
the content as early as possible from your colleagues. No point in
wasting time to make something look good if what you’re writing
is not at all what was expected. Let’s now get the ggplot of the
data to show in the document as well.

403



13. Build automation with targets

For this, simply add:

```{r}
tar_read(plot_mtcars)
```

at the bottom of the .Rmd file. Running the pipeline again will
now add the plot to the document. Before continuing, let me just
remind you, again, of the usefulness of {targets} by changing
the underlying data. Run the following:

write.csv(head(mtcars),
"mtcars.csv",
row.names = F)

and run the pipeline again. Because the data changed and ev-
ery target depends on the data, the document gets entirely re-
built. I hope that you see why this is really great: in case you
need to build weekly, daily, heck, even hourly reports, by using
{targets} the updated report can now get built automatically,
and the targets that are not impacted by these recurrent updates
will not need to be recomputed. Restore the data by running:

write.csv(mtcars,
"mtcars.csv",
row.names = F)

and rebuild the document by running the pipeline.

Now that the pipeline runs well, we can work a little on the
document itself, by transforming the output into a nice looking
table using {flextable}. But there is an issue however:
the output of summary() on a data.frame object is not a

404



13.7. {targets} and RMarkdown (or Quarto)

data.frame, but a table and flextable::flextable()
expects a data.frame. So if you call flextable::flextable()
on the output of summary(), you’ll get an error message.
Instead, we need a replacement for summary() that outputs a
data.frame. This replacement is skimr::skim(); let’s go back
to our pipeline and change the call to summary() to skim()
(after adding the {skimr} to the list of loaded packages, as well
as {flextable}):

library(targets)
library(tarchetypes)

tar_option_set(packages = c(
"dplyr",
"flextable",
"ggplot2",
"skimr"
)

)

list(
tar_target(
path_data_mtcars,
"mtcars.csv",
format = "file"

),
tar_target(
data_mtcars,
read.csv(path_data_mtcars)

),
tar_target(
summary_mtcars,

405



13. Build automation with targets

skim(data_mtcars)
),
tar_target(
clean_mtcars,
mutate(data_mtcars,

am = as.character(am))
),
tar_target(
plot_mtcars,
{ggplot(clean_mtcars) +

geom_point(aes(y = mpg,
x = hp,
shape = am))}

),
tar_render(
my_doc,
"my_document.Rmd"

)
)

In the .Rmd file, we can now pass the output of tar_read(
summary_mtcars) to flextable():

## Load the summary

```{r}
tar_read(summary_mtcars) %>%

flextable()
```

If you run the pipeline and look at the output now, you’ll see a
nice table with a lot of summary statistics. Since the output of
skim() is a data.frame, you can only keep the stats you want

406



13.7. {targets} and RMarkdown (or Quarto)

by dplyr::select()ing the columns you need:

## Load the summary

```{r}
tar_read(summary_mtcars) %>%

select(Variable = skim_variable,
Mean = numeric.mean,
SD = numeric.sd,
Histogram = numeric.hist) %>%

flextable()
```

If you want to hide all the R code in the output document,
simply use knitr::opts_chunk$set(echo = F) in the source
.Rmd file, or if you want to hide the code from individual chunks
use echo = FALSE in the chunks header. Here is what the final
source code of the .Rmd could look like:

---
title: "mtcars is the best data set"
author: "mtcars enjoyer"
date: today
---

```{r, include = FALSE}
Hides all source code
knitr::opts_chunk$set(echo = F)
```

407



13. Build automation with targets

## Load the summary statistics

I really like to see the distribution of the
variables as a cell of a table:

```{r}
tar_read(summary_mtcars) %>%

select(Variable = skim_variable,
Mean = numeric.mean,
SD = numeric.sd,
Histogram = numeric.hist) %>%

flextable() %>%
set_caption("Summary statistics for mtcars")

```

## Graphics

The plot below is really nice, just look at it:

```{r, fig.cap = "Scatterplot of `mpg` and `hp`
by type of transmission"}↪

tar_read(plot_mtcars) +
theme_minimal() +
theme(legend.position = "bottom")

```

As you can see, once I’ve used tar_read(), I get back the ob-
ject just as if I had generated it from within the .Rmd source
file, and can simply add stuff to it (like changing the theme

408



13.8. Rewriting our project as a pipeline and {renv} redux

of the ggplot). Once you’re happy with the contents, you can
add output: word_document to the header of the document
(just below date: today for example) to generate a Word doc-
ument.

Let me reiterate the advantages of using {targets} to compile
RMarkdown documents: because the computation of all the ob-
jects is handled by {targets}, compiling the document itself is
very quick. All that needs to happen is loading pre-computed
targets. This also means that you benefit from all the other
advantages of using {targets}: only the outdated targets get
recomputed, and the computation of the targets can happen in
parallel. Without {targets}, compiling the RMarkdown docu-
ment would always recompute all the objects, and all the objects’
recomputation would happen sequentially.

13.8. Rewriting our project as a pipeline
and {renv} redux

It is now time to return our little project into a full-fledged
reproducible pipeline. For this, we’re going back to our project’s
folder and specifically to the fusen branch. This is the branch
where we used {fusen} to turn our .Rmd into a package. This
package contains the functions that we need to update the data.
But remember, we wrote the analysis in another .Rmd file that
we did not inflate, analyse_data.Rmd. We are now going to
write a {targets} pipeline that will make use of the inflated
package and compute all the targets required for the analysis.
The first step is to create a new branch, but you could also
create an entirely new repository if you want. It’s up to you. If
you create a new branch, start from the rmd branch, since this
will provide a nice starting point.

409



13. Build automation with targets

#switch to the rmd branch
owner@localhost $ git checkout rmd

#create and switch to the new branch called
pipeline↪

owner@localhost $ git checkout -b pipeline

If you start with a fresh repository, you can grab the
analyse_data.Rmd from here3.

First order of business, let’s delete save_data.Rmd (unless you
started with an empty repo). We don’t need that file anymore,
since everything is now available in the package we developed:

owner@localhost $ rm save_data.Rmd

Let’s now start an R session in that folder and install our
{housing} package. Whether you followed along and devel-
oped the package, or skipped the previous parts and didn’t
develop the package by following along, install it from my
Github repository. This ensures that you have exactly the same
version as me. Run the following line:

remotes::install_github("rap4all/housing@fusen",
ref = "1c86095")

This will install the package from my Github repository, and
very specifically the version from the fusen branch at commit
1c86095 (you may need to install the {remotes} package first).
Now that the package is installed, we can start building the
pipeline. In the same R session, call tar_script() which will
give us a nice template _targets.R file:

3https://is.gd/L2GICG

410

https://raw.githubusercontent.com/b-rodrigues/rap4all/master/rmds/analyse_data.Rmd


13.8. Rewriting our project as a pipeline and {renv} redux

targets::tar_script()

You should at most have three files: README.md, _targets.R
and analyse_data.Rmd (unless you started with an empty repo,
in which case you don’t have the README.md file). We will now
change analyse_data.Rmd, to load pre-computed targets, in-
stead of computing them inside the analyse_data.Rmd at com-
pilation time.

First, we need to load the data. The two datasets we use are
now part of the package, so we can simply load them using
data(commune_level_data) and data(country_level_data).
But remember, {targets} only loves pure functions, and
data() is not pure! Let’s see what happens when you call
data(mtcars). If you’re using RStudio, this is really visible:
in a fresh session, calling data(mtcars) shows the following in
the Environment pane:

Figure 13.7.: What’s described as ‘mtcars’ is not a ‘data.frame’,
yet.

411



13. Build automation with targets

At this stage, mtcars is only a promise. It’s only if you need to
interact with mtcars that the promise becomes a data.frame.
So data() returns a promise, does this mean that we can save
that into a variable? If you try the following:

x <- data(mtcars)

And check out x, you will see that x contains the string "mtcars"
and is of class character! So data() returns a promise by saving
it directly to the global environment (this is a side-effect) but it
returns a string. Because {targets} needs pure functions, if we
write:

tar_target(
target_mtcars,
data(mtcars)

)

the target_mtcars target will be equal to the "mtcars" char-
acter string. This might be confusing, but just remember: a
target must return something, and functions with side-effects
don’t always return something, or not the thing we want. Also
remember the example on plotting with plot(), which does not
return an object. It’s actually the same issue here.

So to solve this, we need a pure function that returns the
data.frame. This means that it first needs to load the data,
which results in a promise (which gets loaded into the environ-
ment directly), and then evaluate that promise. The function
to achieve this is as follows:

read_data <- function(data_name, package_name){

412



13.8. Rewriting our project as a pipeline and {renv} redux

temp <- new.env(parent = emptyenv())

data(list = data_name,
package = package_name,
envir = temp)

get(data_name, envir = temp)
}

This function takes data_name and package_name as arguments,
both strings.

Then, I used data() but with two arguments: list = and
package =. list = is needed because we pass data_name as
a string. If we did something like data(data_name) instead,
hoping that data_name would get replaced by its bound value
("commune_level_data") it would result in an error. This is
because data() would be looking for a data set literally called
data_name instead of replacing data_name by its bound value.
The second argument, package = simply states that we’re look-
ing for that dataset in the {housing} package and uses the
bound value of package_name. Now comes the envir = argu-
ment. This argument tells data() where to load the data set.
By default, data() loads the data in the global environment.
But remember, we want our function to be pure, meaning, it
should only return the data object and not load anything into
the global environment! So that’s where the temporary environ-
ment created in the first line of the body of the function comes
into play. What happens is that the function loads the data
object into this temporary environment, which is different from
the global environment. Once we’re done, we can simply discard
this environment, and so our global environment stays clean.

The final step is using get(). Remember that once the line

413



13. Build automation with targets

data(list = data_name...) has run, all we have is a promise.
So if we stop there, the target would simply hold the charac-
ter "commune_level_data". In order to turn that promise into
the data frame, we use get(). We’ve already encountered this
function in Chapter 7. get() searches an object by name, and
returns it. So in the line get(data_name), data_name gets first
replaced by its bound value, so get("commune_level_data")
and hence we get the dataset back. Also, get() looks for that
name in the temporary environment that was set up. This way,
there is literally no interaction with the global environment, so
that function is pure: it always returns the same output for the
same input, and does not pollute, in any way, the global envi-
ronment. After that function is done running, the temporary
environment is discarded.

This seems overly complicated, but it’s all a consequence of
{targets} needing pure functions that actually return some-
thing to work well. Unfortunately some of R’s default functions
are not pure, so we need this kind of workaround. However,
all of this work is not in vain! By forcing us to use pure func-
tions, {targets} contributes to the general quality and safety
of our pipeline. Once our pipeline is done running, the global
environment will stay clean. Having stuff pollute the global en-
vironment can cause interactions with subsequent runs of the
pipeline.

Let’s continue the pipeline: here is what it will ultimately look
like:

library(targets)
library(tarchetypes)

tar_option_set(packages = "housing")

414



13.8. Rewriting our project as a pipeline and {renv} redux

source("functions/read_data.R")

list(
tar_target(
commune_level_data,
read_data("commune_level_data",

"housing")
),

tar_target(
country_level_data,
read_data("country_level_data",

"housing")
),

tar_target(
commune_data,
get_laspeyeres(commune_level_data)

),

tar_target(
country_data,
get_laspeyeres(country_level_data)

),

tar_target(
communes,
c("Luxembourg",
"Esch-sur-Alzette",
"Mamer",
"Schengen",

415



13. Build automation with targets

"Wincrange")
),

tar_render(
analyse_data,
"analyse_data.Rmd"

)

)

And here is what analyse_data.Rmd now looks like:

---
title: "Nominal house prices data in Luxembourg"
author: "Bruno Rodrigues"
date: "`r Sys.Date()`"
---

Let’s load the datasets (the Laspeyeres price
index is already computed):↪

```{r}
tar_load(commune_data)
tar_load(country_data)
```

We are going to create a plot for 5 communes and
compare the↪

price evolution in the communes to the national
price evolution.↪

Let’s first load the communes:

416



13.8. Rewriting our project as a pipeline and {renv} redux

```{r}
tar_load(communes)
```

```{r, results = "asis"}
res <- lapply(communes, function(x){

knitr::knit_child(text = c(

'\n',
'## Plot for commune: `r x`',
'\n',
'```{r, echo = F}',
'print(make_plot(country_data, commune_data,
x))',↪

'```'

),
envir = environment(),
quiet = TRUE)

})

cat(unlist(res), sep = "\n")

```

As you can see, the data gets loaded by using tar_load() which
loads the two pre-computed data sets. The end portion of the
document looks fairly similar to what we had before turning
our analysis into a package and then a pipeline. We use a
child document to generate as many sections as required au-
tomatically (remember, Don’t Repeat Yourself!). Try to change

417



13. Build automation with targets

something in the pipeline, for example remove some communes
from the communes object, and rerun the whole pipeline using
tar_make().

We are now done with this introduction to {targets}: we have
turned our analysis into a pipeline, and now we need to ensure
that the outputs it produces are reproducible. So the first step is
to use {renv}; but as already discussed, this will not be enough,
but it is essential that you do it! So let’s initialize {renv}:

renv::init()

This will create an renv.lock file with all the dependencies of
the pipeline listed. Very importantly, our Github package also
gets listed:

"housing": {
"Package": "housing",
"Version": "0.1",
"Source": "GitHub",
"RemoteType": "github",
"RemoteHost": "api.github.com",
"RemoteRepo": "housing",
"RemoteUsername": "rap4all",
"RemoteRef": "fusen",
"RemoteSha":

"1c860959310b80e67c41f7bbdc3e84cef00df18e",↪

"Hash": "859672476501daeea9b719b9218165f1",
"Requirements": [
"dplyr",
"ggplot2",
"janitor",
"purrr",

418



13.8. Rewriting our project as a pipeline and {renv} redux

"readxl",
"rlang",
"rvest",
"stringr",
"tidyr"

]
},

If you look at the fields titled RemoteSha and RemoteRef you
should recognize the commit hash and repository that were used
to install the package:

"RemoteRef": "fusen",
"RemoteSha":

"1c860959310b80e67c41f7bbdc3e84cef00df18e",↪

This means that if someone wants to re-run our project, by run-
ning renv::restore() the correct version of the package will
get installed! To finish things, we should edit the Readme.md file
and add instructions on how to re-run the project. This is what
the Readme.md file could look like:

# How to run

- Clone the repository: `git clone
git@github.com:rap4all/housing.git`↪

- Switch to the `pipeline` branch: `git checkout
pipeline`↪

- Start an R session in the folder and run
`renv::restore()`↪

to install the project’s dependencies.
- Run the pipeline with `targets::tar_make()`.

419



13. Build automation with targets

- Checkout `analyse_data.html` for the output.

If you followed along, don’t forget to change the url of the
repository to your own in the first bullet point of the Readme.

13.9. Some little tips before concluding

In this section I’ll be showing you some other useful functions
included in the {targets} package that I think you should
know!

13.9.1. Load every target at once

It is possible to load every target included in the cache at once
using tar_load_everything(). But be careful, if your pipeline
builds many targets, this can take some time!

13.9.2. Get metadata information on your
pipeline

tar_meta() will return a data frame with some information
about the pipeline. I find it quite useful after running the
pipeline, and it turns out that some warnings or errors were
raised. This is how this data frame looks like:

targets::tar_meta()

420



13.9. Some little tips before concluding

# A tibble: 11 × 18
name type data command depend [...]
<chr> <chr> <chr> <chr> <chr> [...]

1 analyse_d… stem c251… 995812… 3233e… [...]
2 commune_d… stem 024d… 85c2ab… ec7f2… [...]
3 commune_l… stem fb07… f48470… ce0d8… [...]
4 commune_l… stem fb07… 2549df… 15e48… [...]
5 communes stem b097… be3c56… a3dad… [...]
6 country_d… stem ae21… 9dc7a6… 1d321… [...]

There are more columns than those I’m showing, of great interest
are the columns warnings and error. In the example below, I
have changed the code to read_data(), and now it raises a
warning:

targets::tar_make()

• start target commune_level_data
• built target commune_level_data [0.61 seconds]
• start target country_level_data
• built target country_level_data [0.02 seconds]
� skip target communes
� skip target commune_data
� skip target country_data
� skip target analyse_data
• end pipeline [0.75 seconds]
Warning messages:
1: this is a warning
2: this is a warning
3: 2 targets produced warnings. Run

tar_meta(fields = warnings,↪

421



13. Build automation with targets

complete_only = TRUE) for the messages.
>

Because warnings were raised, the pipeline raises another
warning telling you to run tar_meta(fields = warnings,
complete_only = TRUE) so let’s do it:

tar_meta(fields = warnings, complete_only =
TRUE)↪

This code returns a data frame with the name of the targets
that produced the warning, alongside the warning.

# A tibble: 2 × 2
name warnings
<chr> <chr>

1 commune_level_data this is a warning
2 country_level_data this is a warning

So now you can better see what is going on.

13.9.3. Make a target (or the whole pipeline)
outdated

With tar_invalidate() you can make a target outdated, so
that when you rerun the pipeline, it gets re-computed (alongside
every target that depends on it). This can sometimes be useful
to make sure that everything is running correctly. Try running
tar_invalidate("communes") and see what happens. It is also
possible to complete nuke the whole pipeline and rerun it from
scratch using tar_destroy(). You’ll get asked to confirm if

422



13.9. Some little tips before concluding

that’s what you want to do, and if yes, reruning the pipeline
after that will start from scratch.

13.9.4. Customize the network’s visualisation

By calling visNetwork::visNetworkEditor(tar_visnetwork()),
a Shiny app gets started that lets you customize the look of
your pipeline’s network. You can play around with the options
and see the effect they have on the look of the network. It is
also possible to generate R code that you can then paste into a
script to consistently generate the same look.

13.9.5. Use targets from one pipeline in another
project

If you need to load some targets inside another project (for ex-
ample, because you need to reference an older study), you can
do so easily with {withr}:

withr::with_dir(
"path/to/root/of/project",
targets::tar_load(target_name))

13.9.6. Understanding this cryptic error message

Sometimes, when you try to run the pipeline, you get the follow-
ing error message:

423



13. Build automation with targets

Error:
! Error running targets::tar_make()

Target errors: targets::tar_meta(fields =
error, complete_only = TRUE)↪

Tips: https://books.ropensci.org/targets/
debugging.html↪

Last error: argument 9 is empty

The last line is what interests us here: “Last error: argument
9 is empty”. It is not clear which target is raising this error:
that’s because it’s not a target that is raising this error, but the
pipeline itself! Remember that the pipeline is nothing but a list
of targets. If your last target ends with a , character, list() is
expecting another element. But because there’s none, this error
gets raised. Type list(1,2,) in the console and you will get
the same error message. Simply check your last target, there is
a , in there that you should remove!

13.10. Conclusion

I hope to have convinced you that you need to add build au-
tomation tools to your toolbox. {targets} is a fantastic pack-
age, because it takes care of something incredibly tedious for
you. By using {targets} you don’t have to remember which
objects you need to recompute when you need to change code.
You don’t need to rewrite your code to make it run in parallel.
And by using {renv}, other users can run your pipeline in a
couple of lines and reproduce the results.

In the next chapter, we will be going deeper in the iceberg of
reproducibility still.

424



14. Reproducible analytical
pipelines with Docker

If the book ended at the end of the previous chapter, it would
have been titled “Building analytical pipelines with R”, because
we have not ensured that the pipeline we built is reproducible.
We did our best though:

• we used functional and literate programming;
• we documented, tested and versioned the code;
• we used {renv} to record the dependencies of the project;
• the project was rewritten as a {targets} pipeline and re-

running it is as easy as it can possibly get.

But there are still many variables that we need to consider. If
we go back to the reproducibility iceberg, you will notice that
we can still go deeper. As the code stands now, we did our best
using programming paradigms and libraries, but now we need
to consider other aspects.

As already mentioned in the introduction and Chapter 10,
{renv} only restores package versions. The R version used
for the analysis only gets recorded. So to make sure that the
pipeline reproduces the same results, you’d need to install the
same R version that was used to build the pipeline originally.
But installing the right R version can be difficult sometimes;
it depends on the operating system you want to install it on,

425



14. Reproducible analytical pipelines with Docker

and how old a version we’re talking about. Installing R 4.0 on
Windows should be quite easy, but I wouldn’t be very keen
on trying to install R 2.15.0 (released on March 2012) on a
current Linux distribution (and it might be problematic even
on Windows as well).

Next comes the operating system on which the pipeline was de-
veloped. In practice, this rarely matters, but there have been
cases where the same code produced different results on differ-
ent operating systems, sometimes even on different versions of
the same operating system! For example, Bhandari Neupane et
al. (2019) discuss their attempt at reproducing a paper from
2014. The original scripts and data were available, and yet they
were not able to reproduce the results, even though they made
sure to use the same version of Python that the original authors
from 2014 were using. The reason was the operating system:
they were conducting their replication exercise on a different op-
erating system, and this was causing the results to be different.
What was going on? The original script relied on how the op-
erating system ordered the files for analysis. If the files were
ordered in a different way, the results would be different. And
file ordering is operating system dependent! The table below,
from Bhandari Neupane et al. (2019), shows how the results
vary depending on which operating system the script runs:

426



Figure 14.1.: Different operating system yield different results.

and this table shows how Windows and Ubuntu (Linux) sort
files:

Figure 14.2.: Different OS order files differently!

So the operating system can have an impact, and often an un-

427



14. Reproducible analytical pipelines with Docker

expected impact, on our pipeline!

And finally, I believe that we are in a transition period when
it comes to hardware architecture. Apple will very likely com-
pletely switch over to an ARM architecture with their Apple
silicon CPUs (as of writing, the Mac Pro is the only computer
manufactured by Apple that doesn’t use an Apple silicon CPU
and only because it was released in 2019) and it wouldn’t sur-
prise me if other manufacturers follow suit and develop their own
ARM cpus. This means that projects written today may not run
anymore in the future, because of these architecture changes.
Libraries compiled for current architectures would need to be
recompiled for ARM, and that may be difficult.

So, as I explained in the previous chapter, we want our pipeline
to be the composition of pure functions. Nothing in the global
environment (apart from {target}-specific options) should in-
fluence the runs of the pipeline. But, what about the environ-
ment R is running in? The R engine is itself running in some
kind of environment. This is what I’ve explained above: operat-
ing system (and all the math libraries that are included in the
OS that R relies on to run code) and hardware are variables that
need to be recorded and/or frozen as much as possible.

Think about it this way: when you running a pure function f()
of one argument you think you do this:

f(1)

but actually what you’re doing is:

f(1, "windows 10 - build 22H2 - patch
10.0.19045.2075",
"intel x86_64 cpu i9-13900F",
"R version 4.2.2")

428



14.1. What is Docker?

and so on. f() is only pure as far as the R version currently
running f() is concerned. But everything else should also be
taken into account! Remember, in technical terms, this means
that our function is not referentially transparent. This is ex-
actly what happened in the paper from Bhandari Neupane et al.
(2019) that I described before. The authors relied on a hidden
state (the order of the files) to program their script; in other
words, their pipeline was not referentially transparent.

To deal with this, I will now teach you how to use Docker.
Docker will essentially allow you to turn your pipeline referen-
tially transparent, by freezing R’s and the operating system’s
versions (and the CPU architecture as well).

Before continuing, let me warn you: if you’re using an Apple
computer with an Apple Silicon CPU (M1 or M2), then you
may have issues following along. I don’t own such a machine so
I cannot test if the code below works flawlessly. What I can say
is that I’ve read some users of these computers have had trouble
using Docker in the past. These issues might have been solved
in the meantime. It seems that enabling the option “use Rosetta
for x86/amd64 emulation on Apple Silicon” in Docker Desktop
(I will discuss Docker Desktop briefly in the following sections)
may solve the issue.

14.1. What is Docker?

Let me first explain in very simple terms what Docker is.

In very simple (and technically wrong) terms, Docker makes it
easy to run a Linux virtual machine (VM) on your computer. A
VM is a computer within a computer: the idea is that you turn
on your computer, start Windows (the operating system you use

429



14. Reproducible analytical pipelines with Docker

every day), but then start Ubuntu (a very popular Linux distri-
bution) as if it were any other app installed on your computer
and use it (almost) as you would normally. This is what a classic
VM solution like Virtualbox offers you. You can start and use
Ubuntu interactively from within Windows. This can be quite
useful for testing purposes for example.

The way Docker differs from Virtualbox (or VMware) is that it
strips down the VM to its bare essentials. There’s no graphical
user interface for example, and you will not (typically) use a
Docker VM interactively. What you will do instead is write
down in a text file the specifications of the VM you want. Let’s
call this text file a Dockerfile. For example, you want the VM
to be based on Ubuntu. So that would be the first line in the
Dockerfile. You then want it to have R installed. So that would
be the second line. Then you need to install R packages, so you
add those lines as well. Maybe you need to add some system
dependencies? Add them. Finally, you add the code of the
pipeline that you want to make reproducible as well.

Once you’re done, you have this text file, the Dockerfile, with a
complete recipe to generate a Docker VM. That VM is called an
image (as I said previously it’s technically not a true VM, but
let’s not discuss this). So you have a text file, and this file helps
you define and generate an image. Here, you should already see
a first advantage of using Docker over a more traditional VM
solution like Virtualbox: you can very easily write these Dock-
erfiles and version them. You can easily start off from another
Dockerfile from another project and adapt it to your current
pipeline. And most importantly, because everything is written
down, it’s reproducible (but more on that at the end of this
chapter…).

Ok, so you have this image. This image will be based on some
Linux distribution, very often Ubuntu. It comes with a specific

430



14.1. What is Docker?

version of Ubuntu, and you can add to it a specific version of
R. You can also download a specific version of all the packages
required for your pipeline. You end up with an environment that
is tailor-made for your pipeline. You can then run the pipeline
with this Docker image, and always get exactly the same results,
ever. This is because, regardless of how, where or when you
will run this dockerized pipeline, the same version of R, with
the same version of R packages, on the same Linux distribution
will be used to reproduce the results of your pipeline. By the
way, when you run a Docker image, as in, you’re executing your
pipeline using that image definition, this now is referred to as a
Docker container.

So: a Dockerfile defines a Docker image, from which you can
then run containers. I hope that the pictures below will help.
The first picture shows what happens when you run the same
pipeline on two different R versions and two different operating
systems:

431



14. Reproducible analytical pipelines with Docker

Figure 14.3.: Running a pipeline without Docker results (poten-
tially) in different outputs.

Take a close look at the output, you will notice it’s different!

Now, you run the same pipeline, which is now dockerized:

432



14.1. What is Docker?

Figure 14.4.: Running a pipeline with Docker results in the same
outputs.

Another way of looking at a Docker image: it’s an immutable
sandbox, where the rules of the game are always the same. It
doesn’t matter where or when you run this sandbox, the pipeline
will always be executed in this same, well-defined space. Because
the pipeline runs on the same versions of R (and packages) and
on the same operating system defined within the Docker image,
our pipeline is now truly reproducible.

But why Linux though; why isn’t it possible to create Docker

433



14. Reproducible analytical pipelines with Docker

images based on Windows or macOS? Remember in the intro-
duction, where I explained what reproducibility is? I wrote:

Open source is a hard requirement for reproducibil-
ity.

Open source is not just a requirement for the programming lan-
guage used for building the pipeline but extends to the oper-
ating system that the pipeline runs on as well. So the reason
Docker uses Linux is because you can use Linux distributions
like Ubuntu for free and without restrictions. There aren’t any
licenses that you need to buy or activate, and Linux distributions
can be customized for any use case imaginable. Thus Linux dis-
tributions are the only option available to Docker for this task.

14.2. A primer on Linux

Up until this point, you could have followed along using any op-
erating system. Most of the code shown in this book is R code,
so it doesn’t matter on what operating system you’re running
it. But there was some code that I ran in the Linux console
(for example, I’ve used ls to list files). These commands should
also work on macOS, but on Windows, I told you to run them
in the Git Bash terminal instead. This is because ls (and other
such commands) don’t work in the default Windows command
prompt (but should work in Powershell though). Instead of us-
ing the terminal (or Git Bash) to navigate your computer’s file
system, you could have followed along using the user interface
of your operating system as well. For example, in Chapter 11, I
list the contents of the dev/ directory using the following com-
mand:

434



14.2. A primer on Linux

owner@localhost $ ls dev/

but you could have just opened the dev/ folder in the file ex-
plorer of your operating system of choice. But to use Docker,
you will need to get to know Linux and the Linux ecosystem and
concepts a little bit. No worries, it’s not as difficult as it sounds,
and I think that you likely aren’t afraid of difficult things, or
else you would have stopped reading this book much earlier.

Linux is not the name of any one specific operating system, but
of an operating system kernel. A kernel is an important compo-
nent of an operating system. Linux is free and open-source, and
among the most successful free and open source projects ever.
Because it’s license allows (and encourages) re-use, anyone can
take that kernel, and add all the other components needed to
build a complete operating system and release the finished prod-
uct. This is why there are many Linux distributions: a Linux
distribution is a complete operating system that uses Linux as its
kernel. The most popular Linux distribution is called Ubuntu,
and if one time you googled something along the lines of “easy
linux os for beginners” the answer that came out on top was
likely Ubuntu, or one of the other variants of Ubuntu (yes, be-
cause Ubuntu itself is also open-source and free software, it is
possible to build a variant using Ubuntu as a basis, like Linux
Mint).

To define our Docker images, we will be using Ubuntu as a base.
The Ubuntu operating system has two releases a year, one in
April and one in October. On even years, the April release is
a long-term support (LTS) release. LTS releases get security
updates for 5 years, and Docker images generally use an LTS
release as a base. As of writing (May 2023), the current LTS is
Ubuntu 22.04 Jammy Jellyfish (Ubuntu releases are named with
a number of the form YY.MM and then a code name based on

435



14. Reproducible analytical pipelines with Docker

some animal).

If you want, you can install Ubuntu on your computer. But
there’s no need for this, since you can use Docker to ship your
projects!

A major difference between Ubuntu (and other Linux distribu-
tions) and macOS and Windows is how you install software. In
short, software for Linux distributions is distributed as packages.
If you want to install, say, the Emacs text editor, you can run
the following command in the terminal:

sudo apt-get install emacs-gtk

Let’s break this down: sudo makes the next commands run as
root. root is Linux jargon for the administrator account. So
if I type sudo xyz, the command xyz will run with adminis-
trator privileges. Then comes apt-get install. apt-get is
Ubuntu’s package manager, and install is the command that
installs emacs-gtk. emacs-gtk is the name of the Emacs pack-
age. Because you’re an R user, this should be somewhat familiar:
after all, extensions for R are also installed using a package man-
ager and a command: install.packages("package_name").
Just like in R, where the packages get downloaded from CRAN,
Ubuntu downloads packages from a repository which you can
browse here1. Of course, because using the command line is in-
timidating for beginners, it is also possible to install packages
using a software store, just like on macOS or Windows. But
remember, Docker only uses what it absolutely needs to func-
tion, so there’s no interactive user interface. This is not because
Docker’s developers don’t like user interfaces, but because the
point of Docker is not to use Docker images interactively, so

1https://packages.ubuntu.com/jammy/

436

https://packages.ubuntu.com/jammy/


14.2. A primer on Linux

there’s no need for the user interface. So you need to know how
to install Ubuntu packages with the command line.

Just like for R, it is possible to install software from different
sources. It is possible to add different repositories, and install
software from there. We are not going to use this here, but just
as an aside, if you are using Ubuntu on your computer as your
daily driver operating system, you really should check out r2u2,
an Ubuntu repository that comes with pre-compiled R packages
that can get installed, very, very quickly. Even though we will
not be using this here (and I’ll explain why later in this chapter),
you should definitely consider r2u to provide binary R packages
if you use Ubuntu as your daily operating system.

Let’s suppose that you are using Ubuntu on your machine, and
are using R. If you want to install the {dplyr} R package, some-
thing interesting happens when you type:

install.packages("dplyr")

On Windows and macOS, a compiled binary gets downloaded
from CRAN and installed on your computer. A “binary” is the
compiled source code of the package. Many R packages come
with C++ or Fortran code, and this code cannot be used as
is by R. So these bits of C++ and Fortran code need to be
compiled to be used. Think of it this way: if the source code
is the ingredients of a recipe, the compiled binary is the cooked
meal. Now imagine that each time you want to eat Bouillabaisse,
you have to cook it yourself… or you could get it delivered to
your home. You’d probably go for the delivery (especially if it
would be free) instead of cooking it each time. But this supposes
that there are people out there cooking Bouillabaisse for you.

2https://github.com/eddelbuettel/r2u

437

https://github.com/eddelbuettel/r2u


14. Reproducible analytical pipelines with Docker

CRAN essentially cooks the package source codes into binaries
for Windows and macOS, as shown below:

Figure 14.5.: Download links to pre-compiled tidyverse binaries.

In the image above, you can see links to compiled binaries of
the {tidyverse} package for Windows and macOS, but none
for any Linux distribution. This is because, as stated in the
introduction, there are many, many, many Linux distributions.
So at best, CRAN could offer binaries for Ubuntu, but Ubuntu
is not the only Linux distribution, and Ubuntu has two releases
a year, which means that every CRAN package (that needs com-
pilation) would need to get compiled twice a year. This is a huge
undertaking unless CRAN decided to only offer binaries for LTS
releases. But that would still be every two years.

So instead, what happens, is that the burden of com-
pilation is pushed to the user. Every time you type
install.packages("package_name"), and if that pack-
age requires compilation, that package gets compiled on your
machine which not only takes some time, but can also fail.
This is because very often, R packages that require compilation
need some additional system-level dependencies that need to be
installed. For example, here are the Ubuntu dependencies that
need to be installed for the installation of the {tidyverse}
package to succeed:

438



14.2. A primer on Linux

libicu-dev
zlib1g-dev
make
libcurl4-openssl-dev
libssl-dev
libfontconfig1-dev
libfreetype6-dev
libfribidi-dev
libharfbuzz-dev
libjpeg-dev
libpng-dev
libtiff-dev
pandoc
libxml2-dev

This why r2u is so useful: by adding this repository, what you’re
essentially doing is telling R to not fetch the packages from
CRAN, but from the r2u repository. And this repository con-
tains compiled R packages for Ubuntu. So the required system-
level dependencies get installed automatically and the R package
doesn’t need compilation. So installation of the {tidyverse}
package takes less than half a minute on a modern machine.

But if r2u is so nice, why did I say above that we would not
be using it? Unfortunately, this is because r2u does not archive
compiled binaries of older packages, and this is exactly what we
need for reproducibility. So when you’re building a Docker image
to make a project reproducible, because that image will be based
on Ubuntu, we will need to make sure that our Docker image
contains the right system-level dependencies so that compilation
of the R packages doesn’t fail. Thankfully, you’re reading the
right book.

439



14. Reproducible analytical pipelines with Docker

14.3. First steps with Docker

Let’s start by creating a “Hello World” Docker image. As I
explained in the beginning, to define a Docker image, we need
to create a Dockerfile with some instructions. But first, you need
of course to install Docker. To install Docker on any operating
system (Windows, macOS or Ubuntu or other Linuxes), you can
install Docker Desktop3. If you’re running Ubuntu (or another
Linux distribution) and don’t want the GUI, you could install
the Docker engine4 and then follow the post-installation steps
for Linux5 instead.

In any case, whatever operating system you’re using, we will be
using the command line to interact with Docker. Once you’re
done with installing Docker, create a folder somewhere on your
computer, and create inside of this folder an empty text file
with the name “Dockerfile”. This can be tricky on Windows,
because you have to remove the .txt extension that gets added
by default. You might need to turn on the option “File name
extensions” in the View pane of the Windows file explorer to
make this process easier. Then, open this file with your favourite
text editor, and add the following lines:

FROM ubuntu:jammy

RUN uname -a

This very simple Dockerfile does two things: it starts by stating
that it’s based on the Ubuntu Jammy (so version 22.04) operat-

3https://docs.docker.com/desktop/
4https://docs.docker.com/engine/install/ubuntu/#install-using-the-

repository
5https://docs.docker.com/engine/install/linux-postinstall/#manage-

docker-as-a-non-root-user

440

https://docs.docker.com/desktop/
https://docs.docker.com/engine/install/ubuntu/#install-using-the-repository
https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user
https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user


14.3. First steps with Docker

ing system, and then runs the uname -a command. This com-
mand, which gets run inside the Ubunu command line, prints
the Linux kernel version from that particular Ubuntu release.
FROM and RUN are Docker commands; there are a couple of oth-
ers that we will discover a bit later. Now, what do you do with
this Dockerfile? Remember, a Dockerfile defines an image. So
now, we need to build this image to run a container. Open a
terminal/command prompt in the folder where the Dockerfile is
and type the following:

owner@localhost $ docker build -t raps_hello .

The docker build command builds an image from the Dock-
erfile that is in the path . (a single . means “this current
working directory”). The -t option tags that image with the
name raps_hello. If everything goes well, you should see this
output:

Sending build context to Docker daemon 2.048kB
Step 1/2 : FROM ubuntu:jammy
---> 08d22c0ceb15

Step 2/2 : RUN uname -a
---> Running in 697194b9a519

Linux 697194b9a519 6.2.6-1-default #1 SMP
PREEMPT_DYNAMIC↪

Mon Mar 13 18:57:27 UTC 2023 (fa1a4c6)
x86_64 x86_64 x86_64 GNU/Linux↪

Removing intermediate container 697194b9a519
---> a0ea59f23d01

Successfully built a0ea59f23d01
Successfully tagged raps_hello:latest

Look at Step 2/2: you should see the output of the uname -a

441



14. Reproducible analytical pipelines with Docker

command:

Linux 697194b9a519 6.2.6-1-default #1 SMP
PREEMPT_DYNAMIC↪

Mon Mar 13 18:57:27 UTC 2023 (fa1a4c6)
x86_64 x86_64 x86_64 GNU/Linux↪

Every RUN statement in the Dockerfile gets executed at build
time: so this is what we will use to install R and needed packages.
This way, once the image is built, we end up with an image that
contains all the software we need.

Now, we would like to be able to use this image. Using a built
image, we can start one or several containers that we can use for
whatever we want. Let’s now create a more realistic example.
Let’s build a Docker image that comes with R pre-installed. But
for this, we need to go back to our Dockerfile and change it a
bit:

FROM ubuntu:jammy

ENV TZ=Europe/Luxembourg

RUN ln -snf /usr/share/zoneinfo/$TZ /etc/localtime
&& echo $TZ > /etc/timezone

RUN apt-get update && apt-get install -y r-base

CMD ["R"]

First we define a variable using ENV, called TZ and we set that
to the Europe/Luxembourg time zone (you can change this to
your own time zone). We then run a rather complex looking
command that sets the defined time zone system-wide. We had

442



14.3. First steps with Docker

to do all this, because when we will later install R, a system-
level dependency called tzdata gets installed alongside it. This
tool then asks the user to enter his or her time zone interactively.
But we cannot interact with the image interactively as it’s being
built, so the build process gets stuck at this prompt. By using
these two commands, we can set the correct time zone and once
tzdata gets installed, that tool doesn’t ask for the time zone
anymore, so the build process can continue. This is a rather
known issue when building Docker images based on Ubuntu, so
the fix is easily found with a Google search (but I’m giving it to
you, dear reader, for free).

Then come RUN statements. The first one uses Ubuntu’s package
manager to first refresh the repositories (this ensures that our
local Ubuntu installation repositories are in sync with the latest
software updates that were pushed to the central Ubuntu re-
pos). Then we use Ubuntu’s package manager to install r-base.
r-base is the package that installs R. We then finish this Dock-
erfile by running CMD ["R"]. This is the command that will
be executed when we run the container. Remember: RUN com-
mands get executed at build-time, CMD commands at run-time.
This distinction will be important later on.

Let’s build the image (this will take some time, because a lot of
software gets installed):

owner@localhost $ docker build -t raps_ubuntu_r
.↪

This builds an image called raps_ubuntu_r. This image is
based on Ubuntu 22.04 Jammy Jellyfish and comes with R pre-
installed. But the version of R that gets installed is the one
made available through the Ubuntu repositories, and as of writ-
ing that is version 4.1.2, while the latest version available is

443



14. Reproducible analytical pipelines with Docker

R version 4.2.3. So the version available through the Ubuntu
repositories lags behind the actual release. But no matter, we
will deal with that later.

We can now start a container with the following command:

owner@localhost $ docker run raps_ubuntu_r

And this is the output we get:

Fatal error: you must specify '--save',
'--no-save' or '--vanilla'↪

What is going on here? When you run a container, the command
specified by CMD gets executed, and then the container quits. So
here, the container ran the command R, which started the R
interpreter, but then quit immediately. When quitting R, users
should specify if they want to save or not save the workspace.
This is what the message above is telling us. So, how can we
use this? Is there a way to use this R version interactively?

Yes, there is a way to use this R version boxed inside our Docker
image interactively, even though that’s not really what we want
to achieve. What we want instead is that our pipeline gets
executed when we run the container. We don’t want to mess
with the container interactively. But let me show you how we
can interact with this dockerized R version. First, you need to
let the container run in the background. You can achieve this
by running the following command:

owner@localhost $ docker run -d -it --name
ubuntu_r_1 raps_ubuntu_r↪

444



14.3. First steps with Docker

This runs the container that we name “ubuntu_r_1” from the
image “raps_ubuntu_r” (remember that we can run many con-
tainers from one single image definition). Thanks to the option
-d, the container runs in the background, and the option -it
states that we want an interactive shell to be waiting for us. So
the container runs in the background, with an interactive shell
waiting for us, instead of launching (and then immediately stop-
ping) the R command. You can now “connect” to the interactive
shell and start R in it using:

owner@localhost $ docker exec -it ubuntu_r_1 R

You should now see the familiar R prompt:

R version 4.1.2 (2021-11-01) -- "Bird Hippie"
Copyright (C) 2021 The R Foundation for

Statistical Computing↪

Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO
WARRANTY.↪

You are welcome to redistribute it under certain
conditions.↪

Type 'license()' or 'licence()' for distribution
details.↪

R is a collaborative project with many
contributors.↪

Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in

publications.↪

445



14. Reproducible analytical pipelines with Docker

Type 'demo()' for some demos, 'help()' for
on-line help, or↪

'help.start()' for an HTML browser interface to
help.↪

Type 'q()' to quit R.

>

Welcome to a dockerized version of R. Now, all of this might
have felt overly complicated to you. And of course if this is the
first time that you have played around with Docker, it is tricky
indeed. However, you shouldn’t worry too much about it, for
several reasons:

• we are not going to use Docker containers interactively,
that’s not really the point, but it can be useful to log in
into the running container to check if things are working
as expected;

• we will build our images on top of pre-built images from
the Rocker project6 and these images come with a lot of
software pre-installed and configuration taken care of.

What you should take away from this section is that you need
to write a Dockerfile which then allows you to build an image.
This image can then be used to run one (or several) containers.
These containers, at run-time, will execute our pipeline in an
environment that is frozen, such that the output of this run will
stay constant, forever.

6https://rocker-project.org/

446

https://rocker-project.org/


14.4. The Rocker project

14.4. The Rocker project

The Rocker project offers a very large collection of “R-ready”
Docker images that you can use as starting points for building
your own Docker images. Before using these images though, I
still need to explain one very important Docker concept. Let’s
go back to our “Hello World” Docker image:

FROM ubuntu:jammy

RUN uname -a

The very first line, FROM ubuntu:jammy downloads an Ubuntu
Jammy image, but from where? All these images get down-
loaded from Docker Hub, which you can browse here7. If you
create an account you can even push your own images on there.
For example, we could push the image we built before, which
we called raps_ubuntu_r, on Docker Hub. Then, if we wanted
to create a new Docker image that builds upon raps_ubuntu_r
we could simply type FROM username:raps_ubuntu_r (or some-
thing similar).

It’s also possible to not use Docker Hub at all, and share the
image you built as a file. I’ll explain how later.

The Rocker project offers many different images, which are de-
scribed here8. We are going to be using the versioned images.
These are images that ship specific versions of R. This way, it
doesn’t matter when the image gets built, the same version of R
will be installed by getting built from source. Let me explain why
building R from source is important. When we build the image
from the Dockerfile we wrote before, R gets installed from the

7https://hub.docker.com/
8https://rocker-project.org/images/

447

https://hub.docker.com/
https://rocker-project.org/images/


14. Reproducible analytical pipelines with Docker

Ubuntu repositories. For this we use Ubuntu’s package manager
and the following command: apt-get install -y r-base. As
of writing, the version of R that gets installed is version 4.1.3.
There’s two problems with installing R from Ubuntu’s reposito-
ries. First, we have to use whatever gets installed, which can
be a problem with reproducibility. If we ran our analysis using
R version 4.2.1, then we would like to dockerize that version of
R. The second problem is that when we build the image today
we get version 4.1.3. But it is not impossible that if we build
the image in 6 months, we get R version 4.2.0, because it is
likely that the version that ships in Ubuntu’s repositories will
get updated at some point.

This means that depending on when we build the Docker im-
age, we might get a different version of R. There are only two
ways of avoiding this problem: either we build the image once
and archive it and make sure to always keep a copy and ship
that copy forever (or for as long as we want to make sure that
pipeline is reproducible) just as you would ship data, code and
any documentation required to make the pipeline reproducible.
Or we write the Dockerfile in such a way that it always produces
the same image, regardless of when it gets built. I very strongly
advise you to go for the second option, but to also archive the
image. But of course, this also depends on how critical your
project is. Maybe you don’t need to start archiving images, or
maybe you don’t even need to make sure that the Dockerfile
always produces the same image. But I would still highly rec-
ommend that you write your Dockerfiles in such a way that they
always output the same image. It is safer, and it doesn’t really
mean extra work, thanks to the Rocker project.

So, let’s go back to the Rocker project, and specifically their
versioned images which you can find here9. When you use one

9https://rocker-project.org/images/versioned/r-ver.html

448

https://rocker-project.org/images/versioned/r-ver.html


14.4. The Rocker project

of the versioned images as a base for your project, you get the
following guarantees:

• a fixed version of R that gets built from source. It doesn’t
matter when you build the image, it will always ship with
the same version of R;

• the operating system will be the LTS release that was cur-
rent when that specific version of R was current;

• the R repositories are set to the Posit Public Package Man-
ager (PPPM) at a specific date. This ensures that R pack-
ages don’t need to be compiled as PPPM serves binary
packages for the amd64 architecture (which is the archi-
tecture that virtually all non-Apple computers use these
days).

This last point requires some more explanations. You should
know that versioned Rocker images use the PPPM set at
a specific date. This is a very neat feature of the PPPM.
For example, the versioned Rocker image that comes with
R 4.2.2 has the repos set at the 14th of March 2023, as
you can see for yourself here10. This means that if you use
install.packages("dplyr") inside a container running from
that image, then the version of {dplyr} that will get installed
is the one that was available on the 14th of March.

This can be convenient in certain situations, and you may want,
depending on your needs, to use the PPPM set a specific date
to define Docker images, as the Rocker project does. You could
even set the PPPM at a specific date for your main develop-
ment machine (just follow the instructions here11). But keep in
mind that you will not be getting any updates to packages, so

10https://is.gd/fdrq4p
11https://is.gd/jbdTKC

449

https://github.com/rocker-org/rocker-versioned2/blob/fb1d32e70061b0f978b7e35f9c68e2b79bafb69a/dockerfiles/r-ver_4.2.2.Dockerfile#L16
https://packagemanager.rstudio.com/client/#/repos/2/overview


14. Reproducible analytical pipelines with Docker

if you want to install a fresh version of a package that may in-
troduce some nice new features, you’ll need to change the repos
again. This is why I highly advise you to stay with your default
repositories (or use r2u if you are on Ubuntu) and manage your
projects’ package libraries using {renv}. This way, you don’t
have to mess with anything, and have the flexibility to have a
separate package library per project. The other added benefit
is that you can then use the project’s renv.lock file to install
the exact same package library inside the Docker image.

As a quick introduction to using Rocker images, let’s grab our
pipeline’s renv.lock file which you can download from here12.
This is the latest renv.lock file that we generated for our
pipeline, it contains all the needed packages to run our pipeline,
including the right versions of the {targets} package and the
{housing} package that we developed. An important remark:
it doesn’t matter if the renv.lock file contains packages that
were released after the 14th of March. Even if the repositories
inside the Rocker image that we will be using are set to that
date, the lock file also specifies the URL of the right repository
to download the packages from. So that URL will be used
instead of the one defined for the Rocker image.

Another useful aspect of the renv.lock file is that it also records
the R version that was used to originally develop the pipeline,
in this case, R version 4.2.2. So that’s the version we will be
using in our Dockerfile. Next, we need to check the version of
{renv} that we used to build the renv.lock file. You don’t
necessarily need to install the same version, but I recommend
you do. For example, as I’m writing these lines, {renv} version
0.17.1 is available, but the renv.lock file was written by {renv}
version 0.16.0. So to avoid any compatibility issues, we will also
install the exact same version. Thankfully, that is quite easy to
12https://is.gd/5UcuxW

450

https://raw.githubusercontent.com/rap4all/housing/980a1b0cd20c60a85322dbd4c6da45fbfcebd931/renv.lock


14.4. The Rocker project

do (to check the version of {renv} that was used to write the
lock file simply look for the word “renv” in the lock file).

While {renv} takes care of installing the right R packages, it
doesn’t take care of installing the right system-level dependen-
cies. So that’s why we need to install these system-level depen-
dencies ourselves. I will give you a list of system-level depen-
dencies that you can install to avoid any issues below, and I will
also explain to you how I was able to come up with this list. It is
quite easy thanks to Posit and their PPPM. For example, here13

is the summary page for the {tidyverse} package. If you select
“Ubuntu 22.04 (Jammy)” on the top right, and then scroll down,
you will see a list of dependencies that you can simply copy and
paste into your Dockerfile:

Figure 14.6.: System-level dependencies for the {tidyverse}
package on Ubuntu.

We will use this list to install the required dependencies for our
pipeline.

Create a new folder and call it whatever you want and save the
renv.lock file linked above inside of it. Then, create an empty
text file and call it Dockerfile. Add the following lines:

13https://is.gd/ZaXHwa

451

https://packagemanager.rstudio.com/client/#/repos/2/packages/tidyverse


14. Reproducible analytical pipelines with Docker

FROM rocker/r-ver:4.2.2

RUN apt-get update && apt-get install -y \
libglpk-dev \
libxml2-dev \
libcairo2-dev \
libgit2-dev \
default-libmysqlclient-dev \
libpq-dev \
libsasl2-dev \
libsqlite3-dev \
libssh2-1-dev \
libxtst6 \
libcurl4-openssl-dev \
libharfbuzz-dev \
libfribidi-dev \
libfreetype6-dev \
libpng-dev \
libtiff5-dev \
libjpeg-dev \
libxt-dev \
unixodbc-dev \
wget \
pandoc

RUN R -e "install.packages('remotes')"

RUN R -e
"remotes::install_github('rstudio/renv@0.16.0')"

RUN mkdir /home/housing

COPY renv.lock /home/housing/renv.lock

452



14.4. The Rocker project

RUN R -e
"setwd('/home/housing');renv::init();renv::restore()"

The first line states that we will be basing our image on the
image from the Rocker project that ships with R version 4.2.2,
which is the right version that we need. Then, we install the re-
quired system-level dependencies using Ubuntu’s package man-
ager, as previously explained. Then comes the {remotes} pack-
age. This will allow us to download a specific version from
{renv} from Github, which is what we do in the next line. I
want to stress again that I do this simply because the original
renv.lock file was generated using {renv} version 0.16.0 and
so to avoid any potential compatibility issues, I also use this one
to restore the required packages for the pipeline. But it is very
likely that I could have installed the current version of {renv}
to restore the packages, and that it would have worked with-
out problems. (Note that for later versions of {renv}, you may
need to insert a ‘v’ before the version number: renv@v1.0.2
for example.) But just to be on the safe side, I install the
right version of {renv}. By the way, I knew how to do this be-
cause I read this vignette14 that explains all these steps (but I’ve
only kept the absolute essential lines of code to make it work).
Next comes the line RUN mkdir /home/housing, which creates
a folder (mkdir stands for make directory), inside the Docker
image, in /home/housing. On Linux distributions, /home/ is
the directory that users use to store their files, so I create the
/home/ folder and inside of it, I create a new folder, housing
which will contain the files for my project. It doesn’t really mat-
ter if you keep that structure or not, you could skip the /home/
folder if you wanted. What matters is that you put the files
where you can find them.

14https://rstudio.github.io/renv/articles/docker.html

453

https://rstudio.github.io/renv/articles/docker.html


14. Reproducible analytical pipelines with Docker

Next comes COPY renv.lock /home/housing/renv.lock.
This copies the renv.lock file from our computer (re-
member, I told you to save this file next to the Dock-
erfile) to /home/housing/renv.lock. By doing this, we
include the renv.lock file inside of the Docker image
which will be crucial for the next and final step: RUN R -e
"setwd('/home/housing');renv::init();renv::restore()".

This runs the R program from the Linux command line with the
option -e. This option allows you to pass an R expression to the
command line, which needs to be written between "". Using R
-e will quickly become a habit, because this is how you can run
R non-interactively, from the command line. The expression we
pass sets the working directory to /home/housing, and then we
use renv::init() and renv::restore() to restore the pack-
ages from the renv.lock file that we copied before. Using this
Dockerfile, we can now build an image that will come with R
version 4.2.2 pre-installed as well as all the same packages that
we used to develop the housing pipeline.

Build the image using docker build -t housing_image .
(don’t forget the . at the end).

The build process will take some time, so I would advise you
to go get a hot beverage in the meantime. Now, we did half
the work: we have an environment that contains the required
software for our pipeline, but the pipeline files themselves are
missing. But before adding the pipeline itself, let’s see if the
Docker image we built is working. For this, log in to a command
line inside a running Docker container started from this image
with this single command:

owner@localhost $ docker run --rm -it --name
housing_container housing_image bash↪

454



14.4. The Rocker project

This starts bash (Ubuntu’s command line) inside the
housing_container that gets started from the housing_image
image. We add the --rm flag to docker run, this way the
Docker container gets stopped when we log out (if not, then
the Docker container will continue running in the background).
Once logged in, we can move to the folder’s project using:

user@docker $ cd home/housing

and then start the R interpreter:

user@docker $ R

if everything goes well, you should see the familiar R prompt
with a message from {renv} at the end:

R version 4.2.2 (2022-10-31) -- "Innocent and
Trusting"↪

Copyright (C) 2022 The R Foundation for
Statistical Computing↪

Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO
WARRANTY.↪

You are welcome to redistribute it under certain
conditions.↪

Type 'license()' or 'licence()' for distribution
details.↪

Natural language support but running in an
English locale↪

455



14. Reproducible analytical pipelines with Docker

R is a collaborative project with many
contributors.↪

Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in

publications.↪

Type 'demo()' for some demos, 'help()' for
on-line help, or↪

'help.start()' for an HTML browser interface to
help.↪

Type 'q()' to quit R.

* Project '/home/housing' loaded. [renv 0.16.0]

Try to load the {housing} package with library("housing").
This should work flawlessly!

14.5. Dockerizing projects

So we now have a Docker image that has the right environment
for our project. We can now dockerize the project itself. There
are two ways to do this: we either simply add the required lines
to our Dockerfile, meaning copying the _targets.R script to the
Docker image at build time and then use targets::tar_make()
to run the pipeline, or we now create a new Dockerfile that will
build upon this image and add the required lines there. In this
section, we will use the first approach, and in the next section,
we will use the second. The advantage of the first approach is
that we have a single Dockerfile, and everything we need is right
there. Also, each Docker image is completely tailor-made for
each project. The issue is that building takes some time, so if

456



14.5. Dockerizing projects

for every project we restart from scratch it can be tedious to have
to wait for the build process to be done (especially if you use
continuous integration, as we shall see in the next chapter).

The advantage of the second approach is that we have a base that
we can keep using for as long as we want. You will only need to
wait once for R and the required packages to get installed. Then,
you can use this base for any project that requires the same
version of R and packages. This is especially useful if you don’t
update your development environment very often, and develop
a lot of projects with it.

In summary, the first approach is “dockerize pipelines”, and the
second approach is “dockerize the dev environment and use it
for many pipelines”. It all depends on how you work: in research,
you might want to go for the first approach, as each project likely
depends on bleeding-edge versions of R and packages. But in
industry, where people tend to put the old adage “if ain’t broke
don’t fix it” into practice, dev environments are usually frozen
for some time and only get updated when really necessary (or
according to a fixed schedule).

To dockerize the pipeline, we first need to understand something
important with Docker, which I’ve already mentioned in passing:
a Docker image is an immutable sandbox. This means that we
cannot change it at run-time, only at build-time. So if we log
in to a running Docker container (as we did before), and install
an R package using install.packages("package_name"), that
package will disappear if we stop that container. The same is
true for any files that get created at run-time: they will also dis-
appear once the container is stopped. So how are we supposed
to get the outputs that our pipeline generates from the Docker
container? For this, we need to create a volume. A volume is
nothing more than a shared folder between the Docker container
and the host machine that starts the container. We simply need

457



14. Reproducible analytical pipelines with Docker

to specify the path for this shared folder when running the con-
tainer, and that’s it.

Let’s first write a Dockerfile that contains all the necessary
files. We simply need to add the _targets.R script from our
pipeline, the analyse_data.Rmd markdown file and all the func-
tions from the functions/ folder (you can find all the required
files here15):

FROM rocker/r-ver:4.2.2

RUN apt-get update && apt-get install -y \
libglpk-dev \
libxml2-dev \
libcairo2-dev \
libgit2-dev \
default-libmysqlclient-dev \
libpq-dev \
libsasl2-dev \
libsqlite3-dev \
libssh2-1-dev \
libxtst6 \
libcurl4-openssl-dev \
libharfbuzz-dev \
libfribidi-dev \
libfreetype6-dev \
libpng-dev \
libtiff5-dev \
libjpeg-dev \
libxt-dev \
unixodbc-dev \
wget \
pandoc

15https://github.com/rap4all/housing/tree/pipeline

458

https://github.com/rap4all/housing/tree/pipeline


14.5. Dockerizing projects

RUN R -e "install.packages('remotes')"

RUN R -e
"remotes::install_github('rstudio/renv@0.16.0')"

RUN mkdir /home/housing

RUN mkdir /home/housing/pipeline_output

RUN mkdir /home/housing/shared_folder

COPY renv.lock /home/housing/renv.lock

COPY functions /home/housing/functions

COPY analyse_data.Rmd /home/housing/analyse_data.Rmd

COPY _targets.R /home/housing/_targets.R

RUN R -e
"setwd('/home/housing');renv::init();renv::restore()"

RUN cd /home/housing && R -e "targets::tar_make()"

CMD mv /home/housing/pipeline_output/*
/home/housing/shared_folder/

I’ve added some COPY statements to copy the files from our com-
puter to the Docker image, and also created some new directo-
ries: the pipeline_output and the shared_folder directories.
pipeline_output is the folder that will contain all the outputs
from the pipeline, and shared_folder (you guessed it) will be
the folder that we will use to save the outputs of the pipeline to

459



14. Reproducible analytical pipelines with Docker

our computer.

I then use targets::tar_make() to run the pipeline, but I
first need to use cd /home/housing to change directories to
the project’s folder. This is because in order to use the library
that {renv} installed, we need to start the R session in the right
directory. So we move to the right directory, then we run the
pipeline using R -e "targets::tar_make()". Notice that we
do both operations within a RUN statement. This means that
the pipeline will run at build-time (remember, RUN statements
run at build-time, CMD statements at run-time). In other words,
the image will contain the outputs. This way, if the build pro-
cess and the pipeline take a long time to run, you can simply
leave them running overnight for example. In the morning, while
sipping on your coffee, you can then simply run the container
to instantly get the outputs. This is because we move the out-
puts of the pipeline from the folder pipeline_output to the
shared_folder folder using a CMD statament. Thus, when we
run the container, the outputs get moved into the shared folder,
and we can retrieve them.

One last thing I had to do: I needed to change the last target in
the _targets.R script. Before dockerizing it, it was like this:

tar_render(
analyse_data,
"analyse_data.Rmd"

)

but I had to change it to this:

tar_render(
analyse_data,

460



14.5. Dockerizing projects

"analyse_data.Rmd",
output_dir = "/home/housing/pipeline_output"

)

The argument to output_dir gets passed to knitr::knit()
and simply states that the output files should be saved in that
folder. I can now build the image using docker build -t
housing_image .. Once the build process is done, we can log
in to the container to see if our files are there. But let me
repeat again, that you are not really supposed to do so. You
could simply run the container now and get your files. But let’s
just take a quick look. You can log in to a bash session using:

owner@localhost $ docker run --rm -it --name
housing_container housing_image bash↪

If you then move to /home/housing/pipeline_output and run
ls in that folder, you should see analyse_data.html. That’s
our output! So how do we get it out?

You need to run the container with the -v flag which allows you
to specify the path to the shared folder on your computer, and
the shared folder inside the Docker container. The code below
shows how to do it (I’ve used the \ to break this long command
over two lines):

owner@localhost $ docker run --rm --name
housing_container -v \↪

/host/path/to/shared_folder:
/home/housing/shared_folder:rw \↪

housing_image

/host/path/to/shared_folder is the path to the shared folder

461



14. Reproducible analytical pipelines with Docker

on my computer. /home/housing/shared_folder is the path
to the shared folder inside the Docker container. When these
lines run, the very last CMD statement from the Dockerfile runs,
moving the contents from inside the Docker container to our
computer. If you check the contents of the shared_folder on
your computer, you will see analyse_data.html in there.

That’s it, we have now a complete reproducible analytical
pipeline. We managed to tick every one of the following boxes
when running our pipeline:

• Same version of R that was used for development;
• Same versions of all the packages that were used for devel-

opment;
• The whole stack runs on a “frozen” environment;
• We can reproduce this environment (but more on that

later…).

We now need to share all this with the world. One simple solu-
tion is to share the Dockerfile on Github. For example, this is
the repository16 with all the required code to build the Docker
image and run the pipeline. But we could also share the built
image so that users only need to run the pipeline to instantly
get the results. In the next section, we will learn about docker-
izing development environments, and then see how we can share
images that have already been built.

16https://github.com/rap4all/housing/tree/docker

462

https://github.com/rap4all/housing/tree/docker
https://github.com/rap4all/housing/tree/docker


14.6. Dockerizing development environments

14.6. Dockerizing development
environments

14.6.1. Creating a base image for development

In the previous section, I mentioned that you could either “dock-
erize pipelines” or “dockerize the dev environment and use it for
many pipelines”. What we learned up until now was how to
dockerize one single pipeline. In this section, we will learn how
to build and dockerize an environment, and then build pipelines
that use this environment as starting points.

Let me first explain, again, why (or when) you might want to use
this approach instead of the “dockerizing pipelines” approach.

Depending on what or where you work, it is sometimes necessary
to have a stable development environment that only gets rarely
updated (following a strict schedule). In my own experience,
when I was doing research I was almost always using the latest
R version and packages. When I joined the private sector, we
worked on an environment that we developers could not update
ourselves. That environment was updated according to a fixed
schedule and now that I’m back in the public sector (but not
doing research), I work in a similar manner, on a “frozen” envi-
ronment. Working on frozen environments like this minimizes
the unexpected issues that frequent updates can bring. So how
can we use Docker to use such an approach?

The idea is to split up the Dockerfile we used in the previous
section into two parts. The first part would consist in setting up
everything that is “OS-related”. So installing R, packages, and
system-level dependencies. The second Dockerfile would use the
image defined thanks to the first Dockerfile as a base and then
add the required lines to obtain the results from the pipeline.

463



14. Reproducible analytical pipelines with Docker

The first image, that focuses on the operating system, can be
archived and re-used for as long as required to keep building
pipelines. Once we update our environment, we can then re-
generate a new Docker image that reflects this update.

Let’s do this now. The first image would simply consist of these
lines:

FROM rocker/r-ver:4.2.2

RUN apt-get update && apt-get install -y \
libglpk-dev \
libxml2-dev \
libcairo2-dev \
libgit2-dev \
default-libmysqlclient-dev \
libpq-dev \
libsasl2-dev \
libsqlite3-dev \
libssh2-1-dev \
libxtst6 \
libcurl4-openssl-dev \
libharfbuzz-dev \
libfribidi-dev \
libfreetype6-dev \
libpng-dev \
libtiff5-dev \
libjpeg-dev \
libxt-dev \
unixodbc-dev \
wget \
pandoc

RUN R -e "install.packages('remotes')"

464



14.6. Dockerizing development environments

RUN R -e
"remotes::install_github('rstudio/renv@0.16.0')"

This image can then be built using docker build -t
dev_env_r . (if you followed along, the cache will be used and
this image should get built instantly). This simply installs all
the packages and system-level dependencies that are common
and needed for all pipelines. Then, each specific package
libraries that are required for each pipeline will get installed
using the pipeline-specific renv.lock file. This will be done
with a second Dockerfile. But first, we need to make the
dev_env_r image available to others, such that it becomes
possible to build new images upon dev_env_r. There are two
ways to make images available to anyone: either online through
Docker Hub17 (in case there’s nothing preventing you from
sharing the development environment through Docker Hub) or
locally, by compressing the images and sharing them internally
(in case you don’t want to share your images with the world,
because they contain proprietary software that you’ve devel-
oped within your company for example). I want to stress that
making the image available through Docker Hub is different
from sharing the Dockerfile through Github. You could just
share the Dockerfiles through Github, and then tell users to
first build the dev environment, and then build the pipeline
image by building the second, pipeline-specific Dockerfile. But
by sharing a built image from Docker Hub, users (including
future you) will only need to build the pipeline-specific image
and this is much faster. Just like we used FROM ubuntu:jammy
in our Dockerfiles before, we will now use something like FROM
my_repo/my_image:version_number from now on.

In the next section I will discuss sharing images on Docker Hub,
17https://hub.docker.com/

465

https://hub.docker.com/


14. Reproducible analytical pipelines with Docker

but before that, let me first address the elephant in the room:
the development environment that you are using may not be the
one you are dockerizing. For example, if you are using Windows
or macOS on your computer, then the environment that you are
dockerizing will be different since it will be based on Ubuntu.
There are only four solutions to this conundrum:

• You don’t care, and maybe that’s fine. As I stated multiple
times, the same pipeline outputting different results due
to different operating systems is in practice rare (but it
can happen);

• You prefer being safe than sorry, and install Ubuntu on
your pc as well. This is very often not an acceptable solu-
tion, however.

• You develop on your host environment, but after you’re
done you compare the results obtained from the Docker
container to those obtained on your development environ-
ment.

• You use the Docker image not only to ship RAPs, but also
for development.

The last option implies that you use Docker interactively, which
is not ideal, but it is possible. For example, you could install
RStudio server and run a Dockerized version of RStudio from a
running Docker container. This is actually what happens if you
follow the instructions on the Rocker project’s homepage. You
can get a dockerized RStudio instance by running:

owner@localhost $ docker run --rm -ti -e
PASSWORD=yourpassword -p 8787:8787
rocker/rstudio

↪

↪

and then going to http://localhost:8787 on your web-
browser. You can then log in with the username “rstudio”

466



14.6. Dockerizing development environments

and the password “yourpassword”. But you would also need
to mount a volume (I called it “shared folder” previously) to
keep the files you edit on your computer (remember, Docker
container are immutable, so any files created within a Docker
container will be lost when it’s stopped). Overall, I think that
this is too cumbersome, especially because the risks of getting
different results only because of your operating system are very,
very, very low. I would simply advise the following:

• Use the same version of R on your computer and on
Docker;

• Use the same package library on your computer and on
Docker by using the same renv.lock file.

By following these two rules, you should keep any issues to a
minimum. When or if you need to update R and/or the package
library on your machine, simply create a new Docker image that
reflects these changes.

However, if you work in a field where operating system versions
matter, then yes, you should find a way to either use the docker-
ized environment for development, or you should install Ubuntu
on your computer (the same version as in Docker of course).

Let’s now discuss sharing images.

14.6.2. Sharing images through Docker Hub

If you want to share Docker images through Docker Hub, you
first need to create a free account. A free account gives you
unlimited public repositories. If you want to make your images
private, you need a paid account. For our purposes though, a
free account is more than enough. Again, in the next section, we

467



14. Reproducible analytical pipelines with Docker

will discuss how you can build new images upon other images
without using Docker Hub.

If you want to follow along, make sure that you have also written
a Dockerfile and built an image that you can upload on Docker
Hub. I will be uploading the image dev_env_r to Docker Hub,
so if you want, you could use it for your own projects.

If you built an image to upload, now is the right moment to
talk about the docker images command. This will list all the
images available on your computer. You should see something
like this:

REPOSITORY TAG IMAGE ID
CREATED SIZE↪

rver_intro latest d3764d067534 2
days ago 1.61GB↪

dev_env_r latest 92fcf973ba42 2
days ago 1.42GB↪

raps_ubuntu_r latest 7dabadf3c7ee 4
days ago 1.04GB↪

rocker/tidyverse 4.2.2 545e4538a28a 3
weeks ago 2.19GB↪

rocker/r-ver 4.2.2 08942f81ec9c 3
weeks ago 824MB↪

Take note of the image id of the dev_env_r image (second line),
we will use it to push our image to Docker Hub. Also, don’t be
alarmed by the size of the images, because this is a bit mislead-
ing. Different images that use the same base (so here Ubuntu
Jammy), will reuse “layers” such that they don’t actually take
up the size that is printed by docker images. So if images A
and B both use Ubuntu Jammy as a base, but image A has
RStudio installed and B also RStudio but Python as well, most

468



14.6. Dockerizing development environments

of the space that A and B take up will be shared. The only
difference will be that B will need a little bit more space for
Python.

You can also list the running containers with docker container
ls (or docker ps). If a container is running you should see
something like this:

CONTAINER ID IMAGE COMMAND
CREATED↪

545e4538a28a rocker/tidyverse "/init" 3
minutes ago↪

STATUS PORTS
NAMES↪

Up 3 minutes 0.0.0.0:8787->8787/tcp,
:::8787->8787/tcp elastic_morse↪

You can stop the container by running docker stop CONTAINER
ID. So, list the images again using docker images. Take note
of the image id of the image you want to push to Docker Hub.

Now, log in to Docker Hub using docker login (yes, from your
terminal). You will be asked for your credentials, and if log
in is successful, you see a message Log In Succeeded in your
terminal (of course, you need first to have an account on Docker
Hub).

Now, you need to tag the image (this gives it a version number).
So you would write something like:

owner@localhost $ docker tag IMAGE_ID
your_username_on_docker_hub/your_image:version1↪

so in my case, it would be:

469



14. Reproducible analytical pipelines with Docker

owner@localhost $ docker tag 92fcf973ba42
rap4all/dev_env_r:4.2.2↪

Next, I need to push it using docker push:

owner@localhost $ docker push
rap4all/dev_env_r:4.2.2↪

You can go check your profile and your repositories, you should
see your image there. In my case, you can find the image
here18.

This image can now be used as a stable base for developing our
pipelines. Here’s how I can now use this base image for my
housing pipeline:

FROM rap4all/dev_env_r:4.2.2

RUN mkdir /home/housing

RUN mkdir /home/housing/pipeline_output

RUN mkdir /home/housing/shared_folder

COPY renv.lock /home/housing/renv.lock

COPY functions /home/housing/functions

COPY analyse_data.Rmd /home/housing/analyse_data.Rmd

COPY _targets.R /home/housing/_targets.R

18https://is.gd/7eiz5L

470

https://hub.docker.com/layers/rap4all/dev_env_r/4.2.2/images/sha256-a961d6b11bc1fb3ead5cfcd82e24d3cfbce763fda0efce62f8b0abb319e80160?context=repo


14.6. Dockerizing development environments

RUN R -e
"setwd('/home/housing');renv::init();renv::restore()"

RUN cd /home/housing && R -e "targets::tar_make()"

CMD mv /home/housing/pipeline_output/*
/home/housing/shared_folder/

Take a look at this Dockerfile’s first line:

FROM rap4all/dev_env_r:4.2.2`

This is different from before, where I pulled from ubuntu:jammy.
Now I’m re-using the image that defines the development envi-
ronment, and I can do so for as many projects as necessary. In
time, I could update to a newer version of R, if required. But
R and (Ubuntu) being quite stable, as long as I can install the
packages required for my projects, I can keep using it for years
(and LTS versions of Ubuntu like Jammy get supported for 5
years).

If you want to test this, you could delete all images and contain-
ers from your system. This way, when you will build the image
using the above Dockerfile, it will have to pull from Docker Hub.
To delete all containers, start by using docker system prune.
You can then delete all images using docker rmi $(docker
images -a -q). This should remove everything. Now, let’s
build the image using the above Dockerfile using docker build
-t housing_image . (don’t forget to add the necessary files
for the build process to succeed, renv.lock, _targets.R,
analyse_data.Rmd and the functions folder). You should see
the image getting pulled from Docker Hub and then the build
process resuming and the pipeline running.

471



14. Reproducible analytical pipelines with Docker

In the next section, I’ll explain to you how you can re-use base
images like we just did, but without using Docker Hub, in case
you cannot, or do not want, to rely on it.

14.6.3. Sharing a compressed archive of your
image

If you can’t upload the image on Docker Hub, you can still
“save it” into a file and share that file instead (internally to your
institution/company).

Run docker save to save the image into a file:

owner@localhost $ docker save dev_env_r >
dev_env_r.tar↪

This will create a .tar file of the image. You can then compress
this file with an archiving tool if you want. If you’re on Linux,
you could do so in one go (this will take some time):

owner@localhost $ docker save dev_env_r | gzip >
dev_env_r.tgz↪

If you want to load this image, use docker load:

owner@localhost $ docker load < dev_env_r.tar

you should see an output like this:

202fe64c3ce3: Loading layer
[======================>] 80.33MB/80.33MB↪

472



14.6. Dockerizing development environments

e7484d5519b7: Loading layer
[======================>] 6.144kB/6.144kB↪

a0f5608ee4a8: Loading layer
[======================>] 645.4MB/645.4MB↪

475d1d69813f: Loading layer
[======================>] 102.9kB/102.9kB↪

d7963749937d: Loading layer
[======================>] 108.9MB/108.9MB↪

224a0042a76f: Loading layer
[======================>] 600MB/600MB↪

a75e978c1654: Loading layer
[======================>] 605.7kB/605.7kB↪

7efc10233531: Loading layer
[======================>] 1.474MB/1.474MB↪

Loaded image: dev_env_r:latest

or if you compressed the file on Linux, you can also use:

owner@localhost $ docker load -i dev_env_r.tgz

to load the archive.

You can then use dev_env_r for a pipeline by using this FROM
statement in your Dockerfile:

FROM dev_env_r

Since the image is available locally, it’ll get used instead of
pulling it from Docker Hub. So in case you cannot use Docker
Hub, you could build the base images, compress them, and
share them on your corporate network. Then, people can simply
download them and load them and build new images on top of
them.

473



14. Reproducible analytical pipelines with Docker

So in summary, here’s how you can share images with the world,
your colleagues, or future you:

• Only share the Dockerfiles. Users need to build the images.
• Share images on Docker Hub. It’s up to you if you want to

share a base image with the required development environ-
ment, and then separate, smaller images for the pipelines,
or if you want to share a single image which contains ev-
erything.

• Share images but only within your workplace.

Whatever option you go for, I hope that I’ve convinced you that
Docker is really convenient. It may look complicated at first,
but it saves a lot of headaches in the long run. Let me finish
this section by stating something plainly: up until now, I tried
to sell to you the idea that reproducibility did not require any ex-
tra effort, if you simply used the tools and techniques discussed
in this book right from the start, with the added benefit of im-
proving the quality of the code of your pipeline. I truly believe
this to be the case with everything that I’ve shown up until now,
but Docker. Using Docker for reproducibility does require some
extra effort. However, if your projects require reproducibility,
and you really want to play it safe, I think that Docker is un-
avoidable. It takes time to set up, but once it’s done, you do
not have to think about the infrastructure anymore and can fo-
cus on developing. Also, if you need to maintain your pipeline
and keep running it against newer and newer versions of R, you
simply need to change one line (the FROM statement, for exam-
ple, from Ubuntu Jammy to Ubuntu 24.04, the next LTS) in the
Dockerfile to update everything to the latest version of R.

But, there is still a “little” issue, that I’m discussing in the next
section.

474



14.7. Some issues of relying on Docker

14.7. Some issues of relying on Docker

14.7.1. The problems of relying so much on
Docker

So we now know how to build truly reproducible analytical
pipelines, but let’s be blunt, relying entirely on one single tool,
Docker, is a bit of an issue… it’s a single point of failure. But
the problem is not Docker itself, but the infrastructure.

Let me explain: Docker is based on many different open-source
parts, and that’s great. This means that even if the company
behind Docker ruins it by taking some weird decisions, we have
alternatives that build upon the open-source parts of Docker.
There’s Podman, which is a drop-in replacement (when com-
bined with other tools) made by Red Hat, which is completely
open-source as well. So the risk does not come from there, be-
cause even if for some reason Docker would disappear, or get
abandoned or whatever, we could still work with Podman, and it
would also be technically possible to create a fork from Docker.

But the issue is the infrastructure. For now, using Docker and
more importantly hosting images is free for personal use, edu-
cation, open-source communities and small businesses. So this
means that a project like Rocker likely pays nothing for hosting
all the images they produce (but who knows, I may be wrong
on this). But in early 2023, Docker announced that they would
abandon their Docker Free Team subscription plans that some
open-source organisations use, meaning that these organisations
had 30 days to switch to a paid subscription. Docker finally did
not do this, but it is not unreasonable to think that they might
change their minds once more and this time really go through
with this plan. Don’t get me wrong, I’m not saying that Docker
is not allowed to make money. But it is something that you need

475



14. Reproducible analytical pipelines with Docker

to keep in mind in case you cannot afford a subscription (and
who knows how much it’s going to cost). This is definitely a risk
that needs mitigation, and thus a plan B. This plan B could be
to host the images yourself, by saving them using docker save.
Or you could even self-host an image registry (or lobby your em-
ployer/institution/etc to host a registry for its developers/data
scientists/researchers). In any case, it’s good to have options
and know what potential risks using this technology entail.

14.7.2. Is Docker enough?

I would say that for 99% of applications, yes, Docker is enough
for building RAPs. But strictly speaking, using a Dockerfile
which installs a specific version of R and uses {renv} to install
specific versions of packages and use an LTS release of Ubuntu,
we could end up with two different images. This is because
Ubuntu gets updated, so if you build an image in the beginning
of 2022 and then once again in 2023, the system-level libraries
will be different. So strictly speaking, you end up with two
different images, and it’s not absolutely impossible that this
may impact your pipeline. So ideally, we would also need a way
to always install the same system-level dependencies, regardless
of when we build the image. There is a package manager called
Nix that makes this possible, but this is outside the scope of
this book. The reason is that, again, in practice if you use an
LTS release you should be fine. But if you really require bitwise
reproducibility (i.e., two runs of the same pipeline will yield the
same result to the last bit), then yes, you should definitely look
into Nix (and who knows, I might write a book just about that
titled Building bitwise reproducible analytical pipelines (braps)
using Nix).

Another issue with Docker is that images can be quite opaque,

476



14.8. Conclusion

especially if you define images that pull from images that pull
themselves from other images… Just look at our pipeline: it
pulls from dev_env_r, which pulls from rocker:4.2.2 which
pulls itself from the official Ubuntu Jammy image. So to be
fully transparent, we would need to link to all the Dockerfiles,
or rewrite one big Dockerfile that pulls from Ubuntu Jammy
only.

14.8. Conclusion

This book could stop here. We have learned the following
things:

• version control;
• functional programming;
• literate programming;
• package development;
• testing;
• build automation;
• “basic” reproducibility using {renv};
• “total” reproducibility using Docker.

It is now up to you to select the tools that are most relevant
for your projects. You might not need to package code for ex-
ample. Or maybe literate programming is irrelevant to your
needs. But it is difficult to argue against Docker. If you need
to keep re-running a pipeline for some years, Docker is (almost)
the only option available (unless you dedicate an entire physical
machine to running that pipeline and never, ever, again touch
that machine).

In the next and final chapter, we will learn some basics about
continuous integration with Github Actions, which will allow us

477



14. Reproducible analytical pipelines with Docker

to automate even the building of Docker images and running
pipelines.

478



15. Continuous integration
and continuous
deployment

As I wrote in the conclusion of the previous chapter, the book
could have stopped there. So consider this chapter as a bonus.
What I’m going to show here is not the most important aspect of
reproducibility, and you could even make the case that it is not
needed at all. However, I still think that it is worth showing you
how to use CI/CD, even if only superficially, and then you decide
whether this is a tool that you should add to your toolbox.

The CI/CD (Continuous Integration and Continuous
Deployment or Delivery) platform I’ll be discussing here
is GitHub Actions, which should not surprise you since we’ve
been using GitHub for version control. But maybe you’re
wondering what a “CI/CD platform” even is, so let me start
there.

Let’s go back to the first idea of this book: Don’t Repeat Your-
self. We have written functions and used tools such as {renv}
to avoid having to repeat ourselves. And yet, when it comes to
using Docker, we need to keep building and running containers,
running docker build and docker run over and over again. It
would be great if instead, we didn’t need to do it. This is what
a CI/CD platform essentially allows you to do. The idea is that

479



15. Continuous integration and continuous deployment

building, running and, if applicable, deploying are also tasks that
can be automated, so why not automate them and only take care
of writing code? And as the size of your team grows, the need to
automate these tasks grows as well. Using CI/CD is an essential
part of the DevOps methodology for software engineering.

This chapter can be seen as a small introduction to DevOps for
data science.

According to Atlassian1:

DevOps is a set of practices, tools, and a cultural phi-
losophy that automate and integrate the processes
between software development and IT teams. It em-
phasizes team empowerment, cross-team communi-
cation and collaboration, and technology automa-
tion.

Most of the tools and practices described in this book would
make adopting DevOps in your day-to-day a breeze. Strictly
speaking though, we will be using “GitOps”, because our
GitHub repository will be the centre stage of our project. The
GitHub repository will not only contain the code of our project
but also the definition of the infrastructure the code will run
on. This way, our GitHub repository will be a single source of
truth.

Concretely this means that each time we will push code (or
merge a pull request, or perform any other Git-related event) to
our GitHub repository, we can define a certain set of arbitrary
actions to get executed, like building a Docker image. This
image can then be pushed to Docker Hub, or a container can
be executed. This container in turn can run a pipeline and
the output can then be downloaded from GitHub. All of this

1https://www.atlassian.com/devops

480

https://www.atlassian.com/devops


happens in the cloud; all you need to do is push code changes to
GitHub. As stated in the chapter on Git, GitHub offers 2,000
minutes of computation time a month for CI/CD, which should
be really sufficient for a lot of purposes (but of course, if your
RAP takes hours to complete, you might want to run it locally
instead).

GitHub Actions is very flexible, and you could use it to per-
form many tasks, not just building Docker images or running
containers. For example, this book gets built and published
online automatically each time I push an update to the repos-
itory2 holding the book’s source code. If you’re developing a
package, you could run R CMD check each time you push code
to the repository. R CMD check runs many tests, including the
package’s unit tests (when using {fusen}, R CMD check is run
each time a flat file gets inflated.) and using GitHub Actions,
it’s possible to run R CMD check on Ubuntu (Linux), Windows
and even macOS (see this documentation page3 if you’re inter-
ested).

In this chapter, I’m going to show you how to use GitHub Ac-
tions to:

• run some simple arbitrary code;
• run a {targets} pipeline without Docker;
• build a Docker image containing a development environ-

ment (dev env) and push it to Docker Hub when pushing
changes to its Dockerfile on GitHub;

• run a Docker container that runs a RAP and builds some
output that we can then download from GitHub.

Finally, what does integration and deployment or delivery even
mean? Continuous integration means that changes get merged

2https://github.com/b-rodrigues/rap4all
3https://is.gd/F9AOZI

481

https://github.com/b-rodrigues/rap4all
https://github.com/b-rodrigues/rap4all
https://docs.github.com/en/actions/using-jobs/using-a-matrix-for-your-jobs


15. Continuous integration and continuous deployment

to the master or main branch continuously. Remember Trunk-
based development? In TBD, the goal is achieving continuous
integration, and GitOps is one efficient way of doing so. Now,
what’s the difference between deployment and delivery? Both
obviously mean that we’re shipping a product. The difference
is only in how the project is managed. If the code gets pushed
immediately to production, then we speak of deployment. If in-
stead the code gets pushed to a test server, and final deployment
to production needs to be approved by a manager, then it’s de-
livery. For our purposes, this distinction doesn’t really matter.
Think of delivery or deployment simply as “shipping”.

15.1. CI/CD quickstart for R
programmers (and others)

Before defining a “Hello World” pipeline that gets executed in
the cloud, I need to define some terms. A workflow that runs on
GitHub Actions is defined as a Yaml file, and this file contains a
succession of “actions”, and each action performs a specific task.
Here is the simplest GitHub Actions workflow file that you could
write (source: link4):

name: hello-world
on: push
jobs:
my-job:
runs-on: ubuntu-latest
steps:
- name: my-step

run: echo "Hello World!"

4https://is.gd/9mDykY

482

https://gist.github.com/weibeld/f136048d0a82aacc063f42e684e3c494


15.1. CI/CD quickstart for R programmers (and others)

This needs to be saved in a hello_world.yml file, and placed
inside the .github/workflows/ directories in the GitHub repos-
itory you want this action to run each time something gets
pushed to the repo.

Each time code gets pushed to the repository containing this
workflow file, a runner runs the code echo "Hello World!" on
the latest version of Ubuntu. A workflow file is thus defined as
a series of steps, that can either run code, or an action (more on
actions later) that get executed on a so-called runner (in essence,
a container). This workflow gets executed when a specific event
occurs, in the example above that event is pushing to the repo.
To see the output of the workflow, click on “Actions” on your
GitHub repository:

Figure 15.1.: Click on ‘Actions’ to monitor your workflows.

You should see a list of workflow runs, each corresponding to a
commit. Click on the latest one and then click on the job named
my-job. If your workflow has multiple jobs, they’ll all be listed
here. Once you click on the job, you should see a list of steps.
The step that interested us here is my-step which should simply
print “Hello World!”. Click on it to see the output:

483



15. Continuous integration and continuous deployment

Figure 15.2.: Congrats, that’s your first GA workflow.

To help you define complex workflows, you can use pre-defined
actions that you can choose from to perform a series of com-
mon tasks. You can find them in the GitHub Actions Market-
place5.

We are not going to use any actions from the GitHub Actions
Marketplace just yet though, but instead, we will be looking
at a repository containing actions specifically made for R users
(if you’re using another programming language, it is quite likely
that you might find a repository of actions for that programming
language).

This repository6 contains many actions for R users. For example,
let’s say that you want to install R and run some code using
GitHub Actions. Simply take a look at the setup-r7 and see how
it’s used. Let me edit my hello_world.yml from before, and

5https://github.com/marketplace
6https://github.com/r-lib/actions
7https://github.com/r-lib/actions/tree/v2/setup-r

484

https://github.com/marketplace
https://github.com/marketplace
https://github.com/r-lib/actions
https://github.com/r-lib/actions/tree/v2/setup-r


15.1. CI/CD quickstart for R programmers (and others)

add one step that downloads R and prints "Hello from R!"
using R:

name: hello-from-R
on: push
jobs:

my-job:
runs-on: ubuntu-latest
steps:
- name: hello-from-bash

run: echo "Hello from Bash!"

- name: checkout-repo
uses: actions/checkout@v3

- name: install-r
uses: r-lib/actions/setup-r@v2
with:
r-version: '3.5.3'

- name: hello-r
run: Rscript -e 'print("Hello from R!")'

So now my job performs two tasks, one that prints "Hello from
Bash!" and another that prints "Hello from R!". There are
several steps involved: the second step, called checkout-repo
runs the action actions/checkout@v3, and the third step,
called install-r, uses the action r-lib/actions/setup-r@v2.
The first action, actions/checkout@v3, is an action that you
will see on almost any GitHub Actions workflow file, even
though it is likely superfluous in this case. You can read about
it here8 and it essentially makes the files inside the repository
available to the runner. Sometimes I think that it would have

8https://github.com/actions/checkout

485

https://github.com/actions/checkout


15. Continuous integration and continuous deployment

made more sense to call this action clone, like the git clone
command. But I’m sure there’s a very good reason that this is
not the case. The next action is setup-r@v2 which downloads
and installs, in our example here, R version 3.5.3. The final step
then runs the command Rscript -e 'print("Hello from
R!")'. If you check out the “Actions” tab on GitHub, you
should now see this:

Figure 15.3.: This time it’s R that’s waving hello.

We could have installed any other version of R by the way. We
can keep adding steps, for example, let’s add one to install
{renv} and install packages from an renv.lock file (the file
needs to be in our repository, and becomes available to the work-
flow thanks to actions/checkout@v3):

name: my-pipeline
on: push
jobs:

486



15.1. CI/CD quickstart for R programmers (and others)

my-job:
runs-on: ubuntu-22.04
steps:

- name: checkout-repo
uses: actions/checkout@v3

- name: install-r
uses: r-lib/actions/setup-r@v2
with:
r-version: '4.2.2'

- name: install-renv
uses: r-lib/actions/setup-renv@v2

I think you’re starting to see where this is going. This workflow
runs on Ubuntu 22.04, installs R version 4.2.2 and installs all
the packages defined in the renv.lock file stored in our repos-
itory (and if you don’t have an renv.lock file, only {renv}
will get installed). So to have our RAP running in the cloud,
we would simply need to add the other required files and finish
writing the workflow. One note of warning though: if you’re
running pipelines defined like the above, each time you push, ev-
ery step will run from scratch (apart from package installation
using r-lib/actions/setup-renv@v2 because packages will be
cached for future runs of the workflow), and this may take some
time to run.

487



15. Continuous integration and continuous deployment

15.2. Running a RAP using GitHub
Actions

Because running {targets} pipelines on GitHub Actions
is a common task, there is of course a way to do it very
easily, without the need to write our own workflow file.
Simply go to the folder that contains your pipeline (which,
I hope, is versioned using Git, right?), open an R session
and run targets::tar_github_actions(). This will auto-
matically create a folder called .github/ in the root of your
pipeline’s folder, with inside a workflows/ folder, and inside a
targets.yaml workflow file. This file is ready to use, but you
may adapt it to your needs. For example, this workflow file
runs on ubuntu-latest and installs the latest version of R. You
may want to change the version of Ubuntu to ubuntu-22.04
(this way, Ubuntu 22.04 will keep getting used even when the
next LTS, 24.04, will be released) and install R version 4.2.2 (or
whichever version you used for your pipeline). Also, don’t forget
to install the Ubuntu dependencies under the “Install Linux
System dependencies” step. There’s already some dependencies
there, but you should add the others that we’ve listed in the
Dockerfile (the syntax is slightly different from the Dockerfile,
so pay attention to it). This workflow file also runs some other
useful actions, like caching packages, so they don’t need to get
re-downloaded each time you push a change to the repository!

You can see the repository with the workflow file here9. The
workflow file is inside the .github/workflows/ folder here10.
As I explained before, pay attention to line 29 (where I stated
that the action should trigger when a change gets pushed to
the branch gitops-pipeline), to line 35 where I changed the

9https://github.com/rap4all/housing/tree/gitops-pipeline
10https://is.gd/iIJwuG

488

https://github.com/rap4all/housing/tree/gitops-pipeline
https://github.com/rap4all/housing/blob/gitops-pipeline/.github/workflows/targets.yaml


15.2. Running a RAP using GitHub Actions

runner from ubuntu-latest to ubuntu-22.04, line 43 where I
install R version 4.2.2 and finally lines 53 to 74 where I install
the required Ubuntu dependencies (the same as for the Dock-
erfile). Don’t hesitate to use this repository as a template for
your projects! The rendered HTML file is in the newly created
targets-runs branch of the repository. This branch gets cre-
ated automatically by the workflow and the output gets saved
in there automatically.

So it turns out that running a RAP on GitHub Actions is quite
easy, you only need to use targets::tar_github_actions(),
and adapt the targets.yaml file a little bit to install the right
version of R and run it on the right version of Ubuntu (or Win-
dows or macOS, but careful, you only have 2,000 free minutes
and Windows and macOS are more expensive than Ubuntu, 1
minute of CPU time on Ubuntu is equal to 2 minutes of run-time
on macOS). By using {renv} and the generated renv.lock file,
the pipeline dependencies get installed seamlessly as well. You
can now focus on coding: each time you push to this branch,
you will see the output get generated (and because caching is
being used, runs will be executed rather quickly).

But, and yes there is a but, you should think about the following,
potential, issues:

• You are limited to 2,000 minutes of free run time. If your
pipeline takes several hours to run, you might need to
upgrade to a paid account, or run it locally (but this
is mitigated thanks to caching on GitHub and by using
{targets} that caches results as well);

• GitHub Actions does not keep old versions of operating sys-
tems for too long. For example, as of writing, only versions
20.04 and 22.04 of Ubuntu are available. Ubuntu 18.04 was
removed in August 2022. If your RAP absolutely needs a
specific version of Ubuntu for a very long time, GitHub

489



15. Continuous integration and continuous deployment

Actions might not be the right solution. The same is true
for Windows or macOS as well. However, what you might
want to do instead is migrate the pipeline to newer ver-
sions of Ubuntu when these become available. Generally
speaking, this should not be a very painful process.

So you need to think about what it is you really need. Does
your pipeline run relatively quickly, and you don’t need to keep
it running forever on the same operating system? Then GitHub
Actions is for you. Or perhaps you are writing a book using
Rmarkdown, or Quarto, and don’t want to bother building it
and deploying it manually? Then GitHub Actions is for you as
well (and take a look at this book’s workflow file here11 for an
example of exactly this). But if you are working on a pipeline
that may take several hours to run, and you want it to stay
reproducible for a very long time, then using Docker might be
a better option. Thankfully, you can also use GitHub Actions
to build Docker images and upload them to Docker Hub. You
can even then run a Docker container that runs your RAP (but
here again, if your pipeline takes several hours to run, you may
not want to do that).

15.3. Craft a dockerized dev env with
GA

This section and the next are going to mirror the sections on
dockerizing projects and dockerizing dev envs (development en-
vironments) from the previous chapter. The only difference is
that all the heavy lifting will happen on GitHub Actions, instead
of our own computer.
11https::/is.gd/6nhYaf

490

https://github.com/b-rodrigues/rap4all/blob/master/.github/workflows/quarto-publish.yml


15.3. Craft a dockerized dev env with GA

I’m going to describe the following repository12. This repository
contains a Dockerfile, and a .github/workflows/ folder with
a GitHub Actions workflow file. Each time I push any change
to any file from this repository, a new Docker image gets built
automatically and pushed to Docker Hub. The image that gets
built defines a dev env that we will then use for our RAPs.

As stated before, the advantage of using Docker images for your
RAPs instead of simply running them directly inside GitHub
Actions (as in the previous section), is that you don’t rely on
GitHub to have the base image (in our example, ubuntu-22.04),
forever available, which they won’t.

The idea is the same as before: work on the code of your project,
define a Dockerfile and get an updated image each time you push
your changes to the repository.

Let’s start with the GitHub Actions workflow file that we need.
Here it is:

name: build_docker

on:
push:
branches:
- master
- main

jobs:
docker:

runs-on: ubuntu-latest
env:
IMAGE_NAME: r_4.2.2

steps:

12https://github.com/b-rodrigues/ga_demo/tree/main

491

https://github.com/b-rodrigues/ga_demo/tree/main


15. Continuous integration and continuous deployment

- name: Setup
uses: docker/setup-buildx-action@v2

- name: Login to Docker Hub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME
}}
password: ${{ secrets.DOCKERHUB_TOKEN }}

- name: Build image and push to Docker Hub
uses: docker/build-push-action@v4
with:
tags: ${{ secrets.DOCKERHUB_USERNAME
}}/${{ env.IMAGE_NAME }}:
${{ github.ref_name }}-${{ github.sha }}

push: true

Just one remark: I had to split the tags: line into two lines.
When copying this line into the yaml file, put the two lines back
into one line. Click here13 for the actual file.

I believe that this file is the simplest one you could have for this.
Let’s study it in detail.

The start of the file is pretty standard: we give the workflow
a name, and state that it should run on ubuntu-latest when-
ever anything gets pushed to either main or master. We define
an environment variable called r_4.2.2. This is the name of
the image that we are going to build. We will build an im-
age that comes with R 4.2.2 pre-installed as well as many re-
quired Ubuntu packages; it’s the same image as we built in
the previous chapter on top of which we will then build RAPs.
This image is based on the one from the Rocker project. We

13https://is.gd/0xqH22

492

https://raw.githubusercontent.com/b-rodrigues/ga_demo/6b7bba10b9ce8efc9c4877bb4908d742b1663a7c/.github/workflows/build-renv.yml


15.3. Craft a dockerized dev env with GA

will take a look at the Dockerfile afterwards. Then, the ac-
tion docker/setup-buildx-action@v2 simply sets up every-
thing for buildx to run smoothly (buildx will build the Docker
image using the docker buildx command an alternative to
docker build). Honestly, I don’t even know exactly what it
sets up. I guess it may at least check out the repository to make
the files available to the next actions and maybe set some other
variables for docker buildx.

Then we use the docker/login-action@v2 to login from
GitHub Actions to Docker Hub. Essentially, we need to be
able to tell our GitHub Actions runner how to login to Docker
Hub, and of course we want to do so in a secure manner (and
it must run non-interactively). To login to Docker Hub from
GitHub Actions, you need first to create an access token from
your Docker Hub account. Login to your Docker Hub account,
go to your account settings and then to the “Security” tab:

493



15. Continuous integration and continuous deployment

Figure 15.4.: Create your access token.

Name it github_actions for example, and set its permissions
to “Read, Write, Delete”. On the next window that pops up,
make sure to save your access token:

494



15.3. Craft a dockerized dev env with GA

Figure 15.5.: Make sure to write it down!

You then need to go to the settings area of the repository. Under
“Security”, “Secrets and variables” and finally “Actions”, you
can create a repository secret (as opposed to an environment
secret) called DOCKERHUB_TOKEN and copy the value of the token
in the free text area:

495



15. Continuous integration and continuous deployment

Figure 15.6.: Copy the token in your repo’s secrets.

Create a second secret with your Docker Hub username
called DOCKERHUB_USERNAME. These can now be used in
the workflow file using so-called contexts. Your Docker
Hub username will get replaced wherever you write ${{
secrets.DOCKERHUB_USERNAME }} in the workflow file, same for
your Docker Hub token with ${{ secrets.DOCKERHUB_TOKEN
}}.

Finally, we build and push the image to Docker Hub. This
is done using the action called docker/build-push-action@v4.
We use the tags option to tag our image. The tag needs to start
with your username, followed by a /, then the image name, and
then a version, so something like bob/r_4.2.2:latest where
latest would be the latest version of the image that is available.
Getting bob/r_4.2.2 is quite easy: simply use your Docker Hub

496



15.3. Craft a dockerized dev env with GA

username that you defined as a secret, then literally type / and
then use the image name that you’ve defined in the beginning of
the workflow file. Careful though: bob/r_4.2.2 needs to exist
on Docker Hub as well. bob is easy, that’s your Docker Hub user-
name as already stated, but r_4.2.2 is a repository that you
need to create on Docker Hub. So both your image name and the
repository name on Docker Hub will be r_4.2.2. If you don’t
create a repository on Docker Hub that is exactly named like
that, your image will not get pushed, because GitHub Actions
will not know where to push the image. So if this is not already
the case, go back to Docker Hub and create a repository named
r_4.2.2. For the version, you can do whatever you want, but I
suggest to use the context github.ref_name and github.sha.
github.ref_name gives the name of the branch that starts the
workflow, and github.sha returns the hash number of the com-
mit that starts the workflow. This way, your image will be
named something like bob/r_4.2.2:master-65ai9besta65948.
This allows you to see which commit generated which image,
which is really useful. We then also set push to true, so that
the image gets pushed.

With this workflow file in hand, I can now build a Docker im-
age and push it to Docker Hub simply by pushing code to my
repository. Here are two commits that generated two images:

Figure 15.7.: Two successful runs of GitHub Actions.

and here are the two corresponding images on Docker Hub:

497



15. Continuous integration and continuous deployment

Figure 15.8.: The corresponding images on Docker Hub.

I noticed a typo in my Dockerfile: originally, I was basing my
image on R version 4.2.1. So I changed this and pushed. This
is the commit that starts with b1950. The image then got built,
tagged, and pushed to Docker Hub without any manual inter-
vention on my part. You can see that the tag is of the form
repo-hash, in this case, main-b1950d. Clicking on this tag on
Docker Hub shows you some useful information:

498



15.3. Craft a dockerized dev env with GA

Figure 15.9.: This is the image with the correct R version.

499



15. Continuous integration and continuous deployment

(When running GitHub Actions, you may encounter an
error complaining about permission being denied to “github-
actions[bot]” and therefore being unable to access your
repository. To address this problem, you may need to change
the access settings of your repository to give write permission
to the workflow. Under the settings area of the repository,
select “Actions” then “General”, and then scroll to the bottom
to the “Workflow permissions” section. Select “Read and
write permissions” and then click the “Save” button. Then try
running the workflow again.)

15.4. Run a RAP using a dockerized dev
env on GA

Now that we have a dockerized dev env that gets built by push-
ing changes to a GitHub repo, it is now time to use it for our
RAPs. As I wrote in the beginning, this will mirror the section
on running a RAP that uses a dockerized environment, so we
can start from that repository. This14 was the repository that
we used at the time. You can create a new repository with the
same content (but you can remove the .gitignore file, it won’t
be needed here). This is what my repository15 looks like. The
only difference with the first repository is the Dockerfile and the
GitHub Actions workflow file that is inside .github/workflows.
Let’s take a look at the Dockerfile first:

FROM brodriguesco/r_4.2.2:main-b1950d55ccbd8009de4ee
2006a097c3e7ef1c529

14https://github.com/rap4all/housing/tree/docker
15https://github.com/b-rodrigues/ga_demo_rap

500

https://github.com/rap4all/housing/tree/docker
https://github.com/b-rodrigues/ga_demo_rap


15.4. Run a RAP using a dockerized dev env on GA

RUN mkdir /home/housing

RUN mkdir /home/housing/pipeline_output

RUN mkdir /home/housing/shared_folder

COPY renv.lock /home/housing/renv.lock

COPY functions /home/housing/functions

COPY analyse_data.Rmd /home/housing/analyse_data.Rmd

COPY _targets.R /home/housing/_targets.R

RUN R -e
"setwd('/home/housing');renv::init();renv::restore()"

RUN cd /home/housing && R -e "targets::tar_make()"

CMD mv /home/housing/pipeline_output/*
/home/housing/shared_folder/

It is almost exactly the same as the one from the dockerized
pipeline from the previous chapter. The only difference is the
very first statement, where we pull the base image. Now I’m
using the image from the dockerized environment that I built in
the previous section. Apart from that, everything’s the same.

The magic happens with the workflow file. Here it is:

name: Reproducible pipeline

on:
push:
branches:

501



15. Continuous integration and continuous deployment

- main
- master

jobs:

build:
runs-on: ubuntu-latest

steps:
- name: Checkout repository
uses: actions/checkout@v3

- name: Build the Docker image
run: docker build -t housing_image .

- name: Docker Run Action
run: >

docker run --rm --name housing_container -v
/github/workspace/shared_folder:
/home/housing/shared_folder:rw
housing_image

- uses: actions/upload-artifact@v3
with:

name: housing_output_${{ github.sha }}
path: /github/workspace/shared_folder/

By now, you should certainly understand this workflow file with-
out much trouble. First we checkout the contents of the reposi-
tory to make the files available to the other steps. Then we build
the Docker image. For this, I’m doing this the “old-school” way
by using the actual command that we would use on our local
machine. Then we run the container. Once again I use the
command that I would use locally. But you’ll notice that I use

502



15.4. Run a RAP using a dockerized dev env on GA

/github/workspace/shared_folder as the path to the shared
folder. You likely guessed it, /github/workspace/ is the “lo-
cal” path inside the GitHub Actions runner. This is equivalent
to the /home/ directory on a Linux machine. The command is
also on multiple lines (to write a command over multiple lines
on github actions, you need to start by > and then use as many
lines as you need).

The final action, actions/upload-artifact@v3 is used to
upload the contents of the shared folder and name them
housing_output_${{ github.sha }}, where ${{ github.sha
}} will get replaced by the hash from the commit that triggered
the action. This will be a zip file that you can then download.
But download from where?

Simply click on the “Actions” tab on the GitHub repository, and
then click on the run that you want the artifact from (pipeline
outputs are called artifacts):

Figure 15.10.: Artifacts (pipeline outputs) can be found by going
into a run’s details.

503



15. Continuous integration and continuous deployment

And that’s it! You could tweak the workflow file to instead push
the files to a new branch in the repository, like the workflow file
that targets::tar_github_actions() generates. But I think
that this solution is easier to use, and also, if you need to down-
load the artifact from a previous run, it’s all right there. Simply
select a previous run and download the artifact. If instead, you
push the outputs to a new branch, you’d need to revert to that
commit to get past outputs.

15.5. Conclusion

At the start of this chapter, I stated that this chapter was op-
tional, because it is not necessary to use a CI/CD service to
ensure that your projects are reproducible. However, I believe
that setting up your project to make it run on GitHub Actions
(or any other CI/CD service) truly forces you to master all the
topics presented in this book. In the conclusion of part 1 of the
book, I wrote that it seemed as if functional programming was
only about putting restrictions on our code, for very little gain.
In some ways, forcing yourself to use a CI/CD service can feel
similar. But here’s the thing: if your project builds successfully
on a CI/CD service, and if the results remain stable over time,
then your project is reproducible. Someone else could then run
it locally by simply following the same steps as in the workflow
file, which would consist of the very same basic steps: clone the
repository, build a Docker image and run a container (or set up
the required R package library using {renv} and then run the
pipeline with {targets} if you’re not using Docker).

If you work in research, but cannot push the data to GitHub,
you could always work on the code and the infrastructure using

504



15.5. Conclusion

synthetic data for instance. The repository alongside the syn-
thetic data could then be a nice complement to the paper (but
again, only in case the data cannot be published).

505





16. Conclusion of part 2

Congratulations, we are done going down the reproducibility ice-
berg. Our project should now be entirely reproducible. I showed
you how to reuse the same R version and the same package li-
brary as the one that was used to develop the pipeline originally.
If in addition you’ve used the software engineering best practices
from part 1, your project is also well tested and documented.

This part of the book focused on the operating system your
pipeline runs on. It’s a bit trickier to “freeze” an operating
system, like we froze the R version and the packages library.
Strictly speaking, we should develop and deploy our pipeline on
the same operating system. If you’re using Ubuntu as your daily
driver, that is not an issue, but if you’re a Windows or a macOS
user, then this could potentially be a problem. After all, Docker
images are based on Ubuntu (or other Linux distributions), so
the best we can do is either start developing with the end in
mind from the beginning; which means that we develop our
project from inside a Docker environment, or we must ensure
that running the pipeline inside Docker returns the same results
as on your operating system of choice. This should most of the
time not be an issue, but as already mentioned in this book,
running the same code on Linux or Windows does sometimes
return different results (this is rarer, at least in my experience,
when comparing Linux to macOS).

But there is yet another, potential, issue. Let’s assume the best

507



16. Conclusion of part 2

case scenario: the pipeline returns the same result inside Docker
as on your development machine (which should be the case most
of the time anyways). Is using Docker truly the best we can do?
Is the pipeline truly reproducible? Well, strictly speaking, not
quite. Indeed, the base operating system inside Docker also gets
updated. So if you build an image based on Ubuntu 22.04 today,
and then again in 6 months, the operating system is not the same
anymore, because the software it ships got updated. So even if
the R package library and R version remain fixed, the operating
system does not. Now, I realize that this is really pushing it,
but I want to be as thorough as possible. So there are two ways
around this, if you really, absolutely, need also Ubuntu to remain
frozen.

The first solution is the simplest and is explained in the repro-
ducibility page1 of the Rocker project. The idea is to use a
digest, which is the equivalent of a commit hash on Github but
for Docker images instead. As the example in the linked page
above shows, instead of this:

FROM rocker/r-ver:4.2.0

which would base your Docker image on the latest Ubuntu 22.04
shipping R version 4.2.0, you would use this:

FROM rocker/r-ver@sha256:b343df137d83b0701e0...

which is the digest of the latest rebuild of that image. You can
find digests on the Docker Hub page:

1https://is.gd/YKL0T4

508

https://rocker-project.org/use/reproducibility.html
https://rocker-project.org/use/reproducibility.html


Figure 16.1.: You can find Docker image digests on Docker Hub.

If you use a digest instead of a tag, it doesn’t matter when the
image gets built, you’ll be using the exact same Ubuntu version
under the hood that was current at that time.

The second way around this is to use a functional package man-
ager like Guix or Nix. As I stated in the reproducibility iceberg,
this is outside the scope of this book, but the idea of these pack-
age managers is that they allow users to reproduce the entirety
of a project (so including the operating system libraries) to the
exact same byte. If you want to know more, take a look at Vallet,
Michonneau, and Tournier (2022) (open access article2) which
shows how Guix works by reproducing the results from another
paper.

2https://www.nature.com/articles/s41597-022-01720-9#Abs1

509

https://www.nature.com/articles/s41597-022-01720-9#Abs1




17. The end

Congratulations, you’re done with the book and I hope you
learned a thing or two.

Part 1 focused on teaching you best practices, tools and tech-
niques to make your code as clean as possible. In part 2, I taught
you how to turn your project into a pipeline, and then how to
make this pipeline reproducible using {renv} and Docker. To
summarise, here are all the things that we need to think about
to write a RAP:

• Write code that is as clean as possible: keep it DRY, doc-
ument and test it well;

• Record package dependencies of the project;
• Record the R version that you use;
• Use a tool that builds the project for you;
• Record the computational environment.

If you tick all these boxes, you, or anyone else, should not have
any problems reproducing the results of your project. While it
may seem that ticking these boxes takes up valuable time from
other tasks, if you use the techniques and tools that I’ve showed
you in part 1, this should not be the case, and you might end up
even gaining time. The only exception to this will be preparing a
Docker image, but if you supply at the very least an renv.lock
file, creating a Docker image to run a project could even be done
much later, and only if it’s really needed (and maybe even by
someone else).

511





“So what?”

If you’ve reached this conclusion and are still thinking “meh,
yeah, reproducibility is nice and all, but… so what?” I hope
that this last attempt of mine to convince you that RAPs are
important will be successful.

So, why bother building RAPs? Firstly, there are purely tech-
nical considerations. It is not impossible that in quite a near
future, we will work on ever thinner clients while the heavy-
duty computations will run on the cloud. Should this be the
case, being comfortable with the topics discussed in this book
will be valuable. Also, in this very near future, large language
models will be able to set up most, if not all, of the required
boilerplate code to set up a RAP. This means that you will be
able to focus on analysis, but you still need to understand what
are the different pieces of a RAP, and how they fit together,
in order to understand the code that the large language model
prepared for you, but also to revise it if needed. And it is not
a stretch to imagine that simple analyses could be taken over
by large language models as well. So you might very soon find
yourself in a position where you will not be the one doing an
analysis and setting up a RAP, but instead check, verify and
adjust an analysis and a RAP built by an AI. Being familiar
with the concepts laid out in this book will help you successfully
perform these tasks in a world where every data scientist will
have AI assistants.

513



“So what?”

But more importantly, the following factors are inherently part
of data analysis:

• transparency;
• sustainability;
• scalability.

It doesn’t matter if you’re working in research, for a public insti-
tution or a private sector company: the three points above are
incredibly important and it’s impossible to perform data analy-
sis without taking these into consideration, regardless of whether
AIs take over some, or most, of the tasks you perform today. In
the case of research, the publish or perish model has distorted
incentives so much that unfortunately a lot of researchers are
focused on getting published as quickly as possible, and see
the three factors listed above as hurdles to getting published
quickly. Herculean efforts have to be made to reproduce stud-
ies that are not reproducible, and more often than not, people
that try to reproduce the results are unsuccessful. Thankfully,
things are changing and there are more and more efforts being
made to make research reproducible by design, and not as an
afterthought. In the private sector, tight deadlines lead to the
same problem: analysts think that making the project repro-
ducible is an hindrance to being able to deliver on time. But
here as well, taking the time to make the project reproducible
will help with making sure that what is delivered is of high qual-
ity, and it will also help with making reusing existing code for
future projects much easier, even further accelerating develop-
ment.

Data analysis, at whatever level and for whatever field, is not
just about getting to a result, the way to get to the result is
part of it! This is true for science, this is true for industry, this
is true everywhere. You get to decide where on the iceberg of
reproducibility you want to settle, but the lower, the better.

514



“So what?”

So why build RAPs? Well, because there’s no alternative if you
want to perform your work seriously.

515





References
Arel-Bundock, Vincent. 2022. “modelsummary: Data and

Model Summaries in R.” Journal of Statistical Software 103
(1): 1–23.

Bhandari Neupane, Jayanti, Ram P. Neupane, Yuheng Luo,
Wesley Y. Yoshida, Rui Sun, and Philip G. Williams. 2019.
“Characterization of Leptazolines a–d, Polar Oxazolines
from the Cyanobacterium Leptolyngbya Sp., Reveals a
Glitch with the ‘Willoughby–Hoye’ Scripts for Calculating
NMR Chemical Shifts.” Organic Letters 21 (20): 8449–53.

Chambers, John M. 2014. “Object-Oriented Programming,
Functional Programming and R.” Statistical Science 29 (2):
167–80.

Chan, Chung-hong, and David Schoch. 2023. “RANG: Re-
constructing Reproducible r Computational Environments.”
arXiv.

Firke, Sam. 2023. Janitor: Simple Tools for Examining and
Cleaning Dirty Data.

Gohel, David, and Panagiotis Skintzos. 2023. Flextable: Func-
tions for Tabular Reporting.

Hammant, Paul. 2020. Trunk-Based Development and Branch
by Abstraction. Leanpub.

Landau, William Michael. 2021. “The Targets r Package: A
Dynamic Make-Like Function-Oriented Pipeline Toolkit for
Reproducibility and High-Performance Computing.” Jour-
nal of Open Source Software 6 (57): 2959.

Leisch, Friedrich. 2002. “Sweave: Dynamic Generation of Sta-

517



References

tistical Reports Using Literate Data Analysis.” In Comp-
stat, edited by Wolfgang Härdle and Bernd Rönz, 575–80.
Physica-Verlag HD.

Peng, Roger D. 2011. “Reproducible Research in Computational
Science.” Science 334 (6060): 1226–27.

Rochette, Sebastien. 2022. Fusen: Build a Package from Rmark-
down Files.

Trisovic, Ana, Matthew K Lau, Thomas Pasquier, and Mercè
Crosas. 2022. “A Large-Scale Study on Research Code Qual-
ity and Execution.” Scientific Data 9 (1): 60.

Vallet, Nicolas, David Michonneau, and Simon Tournier. 2022.
“Toward Practical Transparent Verifiable and Long-Term
Reproducible Research Using Guix.” Scientific Data 9 (1):
597.

Wickham, Hadley. 2019. Advanced r. CRC press. https://adv-
r.hadley.nz/.

Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston
Chang, Lucy D’Agostino McGowan, Romain François, Gar-
rett Grolemund, et al. 2019. “Welcome to the tidyverse.”
Journal of Open Source Software 4 (43): 1686.

Wickham, Hadley, and Jenny Bryan. 2023. R Packages (2e).
https://r-pkgs.org/.

Xie, Yihui. 2014. “Knitr: A Comprehensive Tool for Repro-
ducible Research in R.” In Implementing Reproducible Com-
putational Research, edited by Victoria Stodden, Friedrich
Leisch, and Roger D. Peng. Chapman; Hall/CRC.

Xie, Yihui, Christophe Dervieux, and Emily Riederer. 2020. R
Markdown Cookbook. Chapman; Hall/CRC.

518

https://adv-r.hadley.nz/
https://adv-r.hadley.nz/
https://r-pkgs.org/

	Welcome!
	How using a few ideas from software engineering can help data scientists, analysts and researchers write reliable code

	Preface
	Introduction
	Who is this book for?
	What is the aim of this book?
	Prerequisites
	What actually is reproducibility?
	Using open-source tools to build a RAP is a hard requirement
	There are hidden dependencies that can hinder the reproducibility of a project
	The requirements of a RAP

	Are there different types of reproducibility?

	Part 1: Don't Repeat Yourself
	Introduction
	Before we start
	Essential knowledge

	Project start
	Housing in Luxembourg
	Saving trapped data from Excel
	Analysing the data
	Your project is not done
	How easy would it be for someone else to rerun the analysis?
	How easy would it be to update the project?
	How easy would it be to reuse this code for another project?
	What guarantee do we have that the output is stable through time?

	Conclusion

	Version control with Git
	Installing Git and opening a Github account
	Git superbasics
	Git and Github
	Getting to know Github
	Conclusion

	Collaborating using Trunk-based development
	Collaborating as a team
	TBD basics
	Handling conflicts
	Make sure you blame the right person
	Simplified trunk-based development
	Conclusion

	Contributing to public repositories
	Further reading

	Functional programming
	Introduction
	The state of your program
	Predictable functions
	Referentially transparent and pure functions

	Writing good functions
	Functions are first-class objects
	Optional arguments
	Safe functions
	Recursive functions
	Anonymous functions
	The Unix philosophy applied to R

	Lists: a powerful data-structure
	Lists all the way down
	Lists can hold many things
	Lists as the cure to loops
	Data frames

	Functional programming in R
	Base capabilities
	purrr
	withr

	Conclusion

	Literate programming
	A quick history of literate programming
	{knitr} basics
	Set up
	Markdown ultrabasics

	Keeping it DRY
	Generating R Markdown code from code
	Tables in R Markdown documents
	Parametrized reports

	Conclusion

	Conclusion of part 1

	Part 2: Write IT down
	The reproducibility iceberg
	Rewriting our project
	An Rmd for cleaning the data
	An Rmd for analysing the data
	Conclusion

	Basic reproducibility: freezing packages
	Recording packages' version with {renv}
	Daily {renv} usage
	Collaborating with {renv}
	{renv}'s shortcomings

	Becoming an R-cheologist
	Conclusion

	Packaging your code
	Benefits of packages
	{fusen} quickstart
	Turning our Rmds into a package
	Including datasets
	Installing and sharing the package
	Code is hosted
	Code cannot be hosted
	Marketing your work

	Conclusion

	Testing your code
	Unit testing
	Assertive programming
	Test-driven development
	Code coverage
	Conclusion

	Build automation with targets
	Introduction
	{targets} quick-start
	_targets.R's anatomy

	A pipeline is a composition of pure functions
	Handling files
	The dependency graph
	Running the pipeline in parallel
	{targets} and RMarkdown (or Quarto)
	Rewriting our project as a pipeline and {renv} redux
	Some little tips before concluding
	Load every target at once
	Get metadata information on your pipeline
	Make a target (or the whole pipeline) outdated
	Customize the network's visualisation
	Use targets from one pipeline in another project
	Understanding this cryptic error message

	Conclusion

	Reproducible analytical pipelines with Docker
	What is Docker?
	A primer on Linux
	First steps with Docker
	The Rocker project
	Dockerizing projects
	Dockerizing development environments
	Creating a base image for development
	Sharing images through Docker Hub
	Sharing a compressed archive of your image

	Some issues of relying on Docker
	The problems of relying so much on Docker
	Is Docker enough?

	Conclusion

	Continuous integration and continuous deployment
	CI/CD quickstart for R programmers (and others)
	Running a RAP using GitHub Actions
	Craft a dockerized dev env with GA
	Run a RAP using a dockerized dev env on GA
	Conclusion

	Conclusion of part 2

	The end
	``So what?''
	References

