Building reproducible
analytical pipelines with R

Bruno Rodrigues

2023-10-03

Table of contents

Welcome! 1
How using a few ideas from software engineering can
help data scientists, analysts and researchers

write reliable code 1
Preface 3
1. Introduction 11
1.1. Who is this book for? 11
1.2. What is the aim of this book? 12
1.3. Prerequisites 14
1.4. What actually is reproducibility? 15
1.4.1. Using open-source tools to build a RAP
is a hard requirement 16
1.4.2. There are hidden dependencies that can
hinder the reproducibility of a project . . 18
1.4.3. The requirements of a RAP 19
1.5. Are there different types of reproducibility? . . . 20
I. Part 1: Don’t Repeat Yourself 29
Introduction 31
2. Before we start 33

2.1. Essential knowledge 33

il

Table of contents

3.

v

Project start
3.1. Housing in Luxembourg
3.2. Saving trapped data from Excel
3.3. Analysing thedata
3.4. Your project isnot done
3.4.1. How easy would it be for someone else to
rerun the analysis?

60

3.4.2. How easy would it be to update the project? 61

3.4.3. How easy would it be to reuse this code
for another project?
3.4.4. What guarantee do we have that the out-
put is stable through time?
3.5. Conclusion.

Version control with Git

4.1. Installing Git and opening a Github account . . .
4.2. Git superbasicso
4.3. Git and Github
4.4. Getting to know Github
4.5. Conclusion.

Collaborating using Trunk-based development

5.1. Collaborating asa team
5.1.1. TBD basics
5.1.2. Handling conflicts
5.1.3. Make sure you blame the right person
5.1.4. Simplified trunk-based development . . .
5.1.5. Conclusion

5.2. Contributing to public repositories

5.3. Further reading

Functional programming
6.1. Introduction
6.1.1. The state of your program

105
105
105
121

.. 133
. 134

134
135
141

Table of contents

6.1.2. Predictable functions 146
6.1.3. Referentially transparent and pure func-
tions 152
6.2. Writing good functions 154
6.2.1. Functions are first-class objects 154
6.2.2. Optional arguments 160
6.2.3. Safe functions 161
6.2.4. Recursive functions 163
6.2.5. Anonymous functions 165
6.2.6. The Unix philosophy applied to R 165
6.3. Lists: a powerful data-structure 167
6.3.1. Lists all the way down 167
6.3.2. Lists can hold many things 168
6.3.3. Lists as the cure to loops 173
6.3.4. Data frames L. 179
6.4. Functional programmingin R 196
6.4.1. Base capabilities 196
6.4.2. purrr. 203
6.4.3. withr 0oL 205
6.5. Conclusion. 208
7. Literate programming 209
7.1. A quick history of literate programming 211
7.2. {knitr} basics 224
72.1. Setup 224
7.2.2. Markdown ultrabasics 227
7.3. Keepingit DRY 233
7.3.1. Generating R Markdown code from code . 234
7.3.2. Tables in R Markdown documents 244
7.3.3. Parametrized reports 247
74. Conclusion. 252
8. Conclusion of part 1 253

Table of contents

10.

11.

12.

vi

Part 2: Write IT down
The reproducibility iceberg

Rewriting our project

9.1. An Rmd for cleaning the data
9.2. An Rmd for analysing the data
9.3. Conclusion.

Basic reproducibility: freezing packages

10.1. Recording packages’ version with {renv}
10.1.1. Daily {renv} usage
10.1.2. Collaborating with {renv}.
10.1.3. {renv}’s shortcomings

10.2. Becoming an R-cheologist

10.3. Conclusion

Packaging your code
11.1. Benefits of packages
11.2. {fusen} quickstart
11.3. Turning our Rmds into a package
11.4. Including datasets
11.5. Installing and sharing the package.
11.5.1. Code is hosted
11.5.2. Code cannot be hosted
11.5.3. Marketing your work
11.6. Conclusion

Testing your code

12.1. Unit testing
12.2. Assertive programming
12.3. Test-driven development
12.4. Code coverage
12.5. Conclusion

255
257

263
265
279
286

289
291
301
304
304
306
310

311
312
313
323
335
337
338
339
341
344

Table of contents

13.Build automation with targets 371
13.1. Introduction 371
13.2. {targets} quick-start 373

13.2.1. _targets.R’s anatomy 374
13.3. A pipeline is a composition of pure functions . . . 376
13.4. Handling files 383
13.5. The dependency graph 387
13.6. Running the pipeline in parallel 391
13.7. {targets} and RMarkdown (or Quarto) 399
13.8. Rewriting our project as a pipeline and {renv}

redux 409
13.9. Some little tips before concluding 420

13.9.1. Load every target at once 420

14.

13.9.2. Get metadata information on your pipeline420
13.9.3. Make a target (or the whole pipeline) out-

dated 422
13.9.4. Customize the network’s visualisation . . 423
13.9.5. Use targets from one pipeline in another
project 423
13.9.6. Understanding this cryptic error message . 423
13.10Conclusion 424
Reproducible analytical pipelines with Docker 425
14.1. What is Docker? 429
14.2. A primer on Linux 434
14.3. First steps with Docker 440
14.4. The Rocker project 447
14.5. Dockerizing projects 456
14.6. Dockerizing development environments 463
14.6.1. Creating a base image for development . . 463
14.6.2. Sharing images through Docker Hub . . . 467
14.6.3. Sharing a compressed archive of your image472
14.7. Some issues of relying on Docker 475

14.7.1. The problems of relying so much on Docker475

vii

Table of contents

14.7.2. Is Docker enough? 476
14.8. Conclusion 477

15. Continuous integration and continuous deployment 479
15.1. CI/CD quickstart for R programmers (and others) 482

15.2. Running a RAP using GitHub Actions 488
15.3. Craft a dockerized dev env with GA 490
15.4. Run a RAP using a dockerized dev env on GA . . 500
15.5. Conclusion 504
16. Conclusion of part 2 507
17.The end 511
“So what?” 513

References 517

viii

Welcomel!

How using a few ideas from software
engineering can help data scientists,
analysts and researchers write reliable
code

Data scientists, statisticians, analysts, researchers, and many
other professionals write a lot of code.

Not only do they write a lot of code, but they must also read
and review a lot of code as well. They either work in teams and
need to review each other’s code, or need to be able to repro-
duce results from past projects, be it for peer review or auditing
purposes. And yet, they never, or very rarely, get taught the
tools and techniques that would make the process of writing,
collaborating, reviewing and reproducing projects possible.

Which is truly unfortunate because software engineers face the
same challenges and solved them decades ago.

The aim of this book is to teach you how to use some of the best
practices from software engineering and DevOps to make your
projects robust, reliable and reproducible. It doesn’t matter if
you work alone, in a small or in a big team. It doesn’t matter
if your work gets (peer-)reviewed or audited: the techniques

Welcome!

presented in this book will make your projects more reliable
and save you a lot of frustration!

As someone whose primary job is analysing data, you might
think that you are not a developer. It seems as if developers are
these genius types that write extremely high-quality code and
create these super useful packages. The truth is that you are a
developer as well. It’s just that your focus is on writing code
for your purposes to get your analyses going instead of writing
code for others. Or at least, that’s what you think. Because in
others, your team-mates are included. Reviewers and auditors
are included. Any people that will read your code are included,
and there will be people that will read your code. At the very
least future you will read your code. By learning how to set up
projects and write code in a way that future you will understand
and not want to murder you, you will actually work towards
improving the quality of your work, naturally.

The book can be read for free on https://raps-with-r.dev and
you can buy a DRM-free Epub or PDF on Leanpub'.

You can submit issues, PRs and ask questions on the book’s
Github repository?.

Thttps://leanpub.com /raps-with-r/
Zhttps://github.com /b-rodrigues /rap4all

https://raps-with-r.dev
https://leanpub.com/raps-with-r/
https://github.com/b-rodrigues/rap4all

Preface

In the summer of 2022, a former colleague from my first job
asked me if [wanted to help him teach a class at the University
of Luxembourg. It was a class for the Master’s of Data Science,
and the class was supposed to be taught by non-academics like
us. The idea was to teach the students some “real-world” skills
from the industry. It was a 40 hours class, and naturally we
split them equally between us; my colleague focused on time
series statistics but I really didn’t know what I should do. 1
knew I wanted to teach, I always liked teaching, but I am a
public servant in the ministry of higher education and research
in Luxembourg. Istill code a lot, but I don’t do exciting machine
learning anymore, or advanced econometrics like my colleague.
Before (re)joining the public service I was a senior data scientist
and then manager in one of the big four accounting firms. Before
that, and this is where my colleague and I met, I was a research
assistant in the research department of the national statistical
institute of statistics in Luxembourg, and my colleague is still
an applied researcher there.

What could I teach these students? What “skills from the indus-
try” could I possibly share with them? I am an expert in nothing
in particular. Actually, I don’t really know anything very deeply,
but know at least a little about many different things. There are
many self-help books out there that state that it’s better to know
a lot about only a few, maybe even only one, topic, than know
a lot about many topics. I tend to disagree with this; at least

Preface

in my experience, knowing enough about many different topics
always allowed me to communicate effectively with many differ-
ent people, from researchers focusing on very specific topics that
needed my help to assist them in their research, to clients from
a wide range of industries that were sharing their problems with
me in my consulting years. If I needed to deepen my knowledge
on a particular topic before I could intervene, I had the neces-
sary theoretical background to grab a few books and learn the
material. Also, I was never afraid of asking questions.

This is reflected in my blogging. As I'm writing these lines
(beginning of 2023), I have been blogging for about ten years.
Most of my blog posts are me trying to lay out a problem I
had at work and how I solved it. Sometimes I do some things
for pleasure or curiosity, like the two posts on the video game
nethack, or the ones on 19th century newspapers where I learned
a lot about NLP. Because I was lucky enough to work with
different people from many backgrounds, I always had to solve
a very wide range of problems.

But that still didn’t really help me to find a topic to teach..
but then it dawned on me. Even though in my career I had
to help many different people with many different backgrounds
and needs, there were two things that everyone always required:
traceability and reliability.

Everyone wanted to know how I came to the conclusions that I
came to, and most of them even wanted to be able to reproduce
my steps as a form of double checking what I did (consultants
are expensive, so you better make sure that they're worth their
hourly rate!). When I was a manager, I applied the same logic
to my teammates. I wanted to be able to understand what they
were doing, or at least know that if I needed to review their work
deeply, the possibility was there.

https://www.brodrigues.co/blog/2018-11-03-nethack_analysis/
https://www.brodrigues.co/blog/2018-11-03-nethack_analysis/
https://www.brodrigues.co/blog/2019-01-04-newspapers/

Preface

So what I had to teach these students of data science was some
best practices in software engineering. Most people working
with data don’t get taught software engineering skills. Courses
focus on probability theory, linear algebra, algorithms, and pro-
gramming but not software engineering. That’s because soft-
ware engineering skills get taught to software engineers. But
while statisticians, data scientists, (or whatever we get called
these days), are not software engineers, they do write a lot of
code. And code that is quite important at that. And yet, most
of us do work like pigs (no disrespect to pigs).

For example, how much of the code you write that produces very
sensitive and important results, be it in science or in industry,
is thoroughly tested? How much of the code you use relies on a
single person showing up for work and using some secret knowl-
edge that is undocumented? What if that person ends up under
a bus? How much code do you run that no one dares touch
anymore because that one person from before did end up under
a bus?

How many people do you have to ping when you need to get an
update to a quarterly report? How many people do you have
to ping to know how Table 3 from that report from 2020 that
was quickly put together during the Covid-19 lockdowns was
computed? Are all the people involved even working in your
company still?

When collaborating with teammates to write a report or scien-
tific paper, do you consider potential risks? (If you're wondering
What risks? then you're definitely not considering them.)

Are you able to tell anyone, exactly, how that number that gets
used by the CEO in that one report was made? What if there’s
an investigation, or some external audit? Would the auditors
be able to run the code and understand what is going on with

Preface

as little intervention as possible (ideally none) from you? But
I don’t work in an industry that gets audited, you may think.
Well, maybe not, or maybe one day your work will get audited
anyways. Maybe it’ll get audited internally for whatever reason.
Maybe there’s a new law that went into force that requires your
work, or parts of your work, to be easily traceable.

And if you’re a scientist, your work does get audited, or at least it
should be in theory. I don’t know any scientist (and I know more
scientists than the average person, thanks to my background and
current job) that is against the idea of open science, open data,
reproducibility, and so on. Not one. But in practice, how many
papers are truly reproducible? How many scientific results are
auditable and traceable?

Lack of traceability and reproducibility can sometimes lead to
serious consequences. If you're in the social sciences, you likely
know about the Reinhart and Rogoff paper. Reinhard and Ro-
goff are two American economists that published a paper in 2010
that showed that when countries are too much in debt (over
60% of GDP according to the authors) then annual growth de-
creases by two percent. These papers provided an empirical
justification for austerity measures in the aftermath of the 2009
European debt crisis. But there was a serious problem with the
Reinhard and Rogoff paper. It’s not that they somehow didn’t
use the correct theoretical framework or modelling procedure in
their paper. It’s not that their assumptions were disputable or
too unrealistic. It’s that they performed their calculations inside
an Excel spreadsheet and did not, and this is not a joke, they
did not select every country’s real GDP growth to compute the
average real GDP growth for high-debt countries:

Country

Minimum
Maximum

us

UK

Sweden
Spain
Portugal
New Zealand
Metherlands
Morway
Jepan

Traly
Ireland
Greece
Germany

Finland
Denmark
Canada
7| Belgium
Austria
) | Australia

Bl]] o | | v | [n a] [

&l
&

[#/e1e
= ol

1546-2009
1546-2009
1546-2009
1546-2009
1952-200%
1948-2009
1956-2009
1947-2009
1546-2009
1551-2009
1948-2009
1970-2009
1546-2009
1545-200%
1546-2009
1950-2009
1551-2009
1547-2008
1548-2009
1951-2009

Preface

Figure 1.: You can see that not all countries are selected...

(source to image, archived link?)

And this is not the only problem with this paper.

The problem is not that this mistake was made. Reinhard and
Rogoff are only human and mistakes can happen. What’s prob-
lematic is that this was picked up and corrected too late. In an
ideal world, Reinhard and Rogoff would not have used tools that
make mistakes like this almost impossible to find once they’re
made. Instead, they would have used tools that would have
made such a thing not happen in the first place, or, as a sec-
ond best, making it easier and faster for someone else to find
this mistake. And this is not something that is only useful in
research, but also in any industry. Being able to trust results,

3https://archive.is/DTGpC

https://archive.is/DTGpC

Preface

tracing back calculations and auditing are not only concerns of
researchers.

So this is what I decided to teach the students: how they could
structure their projects in such a way that they could spot prob-
lems like that during development, but also make it easy to re-
produce and retrace who did what and when. I wrote my course
notes into a freely available bookdown that I used for teaching.
When I started compiling my notes, I discovered the concept
Reproducible Analytical Pipelines as developed by the Office for
National Statistics (henceforth ONS). I found the name “Repro-
ducible Analytical Pipeline” (henceforth RAP) really perfect for
what I was aiming at. The ONS team responsible for evangelis-
ing RAPs also published a free ebook in 2019 already. Another
big source of inspiration is Software Carpentry to which I was
exposed during my PhD years, around 2014-ish if memory serves.
While working on a project with some German colleagues from
the University of Bonn, the principal investigator made us work
using these concepts to manage the project. I was really im-
pressed by it, and these ideas and techniques stayed with me
since then.

The bottom line is: the ideas I'm presenting here are nothing
new. It’s just that I took some time to compile them and make
them accessible and interesting (at least I hope so) for users of
the R programming language.

At least my students found the course interesting. But not just
students. I tweeted about this course and shared the notes with
a wider audience, and this is when I got very positive feedback
from people that were not my students. People wanted to buy
this as a book and go deeper into the topics laid out. This is
when I realised that, as far as I know, there is not a practical
book available discussing these topics. So I decided to write one,
but I took my time getting started. What finally, really, got me

https://rap4mads.eu/
https://analysisfunction.civilservice.gov.uk/support/reproducible-analytical-pipelines/
https://analysisfunction.civilservice.gov.uk/support/reproducible-analytical-pipelines/
https://ukgovdatascience.github.io/rap_companion/
https://software-carpentry.org/

Preface

working on it was when Dmytro Perepolkin reached out to me
and suggested I contact several persons to get their inputs and
ideas and get started. I followed his advice, and this led to very
fruitful discussions with Sébastien Rochette, Miles McBain and
Dmytro. Their ideas and inputs definitely improved the quality
of this book, so many thanks to them. Also thanks to David
Solito, Matan Hakim, Stas Kolenikov, Sam Parmar, Chuck, Ma-
tous Eibich, Jonathan Moore, Alain Vagner and Matthias Meik-
sner for proofreading the book and providing valuable feedback
and fixes. And thank you, dear reader, for picking this up!

This book is divided into two parts. The first part teaches you
what I believe is essential knowledge you should possess in order
to write truly reproducible pipelines. This essential knowledge
is constituted of:

» Version control with Git and how to manage projects with
Github;

» Functional programming;

o Literate programming.

The main idea from part 1 is “don’t repeat yourself”. Git and
Github will help us avoid losing code, and losing track of who
should do what in a project (even if you're working alone on a
project, you will see that using Git and Github will save you
many hours and headaches). Getting familiar with functional
and literate programming should improve the quality of our code
by avoiding two common sources of mistakes: computing results
that rely on the state of our program (and later, the state of the
whole hardware we are using) and copy and paste mistakes.

The second part of the book will then build upon this knowledge
to introduce several tools that will help us go beyond the benefits
of version control and functional and literate programming:

e Dependency management with {renv};

https://github.com/dmi3kno/
https://github.com/statnmap
https://github.com/MilesMcBain
https://twitter.com/dsolito
https://twitter.com/dsolito
https://github.com/matanhakim
https://github.com/skolenik
https://github.com/parmsam
https://github.com/chorgan182
https://github.com/MatousEibich
https://github.com/MatousEibich
https://github.com/jonathandmoore
https://github.com/AlainVagner
https://github.com/IZE85
https://github.com/IZE85

Preface

« Package development with {fusen};

o Unit and assertive testing;

o Build automation with {targets};

e Reproducible environments with Docker;
« Continuous integration and delivery.

While this is not a book for beginners (you really should be fa-
miliar with R before reading this), I will not assume that you
have any knowledge of the tools presented in part 2. In fact,
even if you're already familiar with Git, Github, functional pro-
gramming and literate programming, I think that you will still
learn something useful from reading part 1. But be warned, this
book will require you to take the time to read it, and then type
on your computer. Type a lot.

I hope that you will enjoy reading this book and applying the
ideas in your day-to-day, ideas which hopefully should improve
the reliability, traceability and reproducibility of your code. You
can read this book for free on https://raps-with-r.dev/, or if
you want you can buy a DRM-free PDF or Epub over at https:
//leanpub.com /raps-with-r.

If you want to get to know me better, read my bio®.

If you have feedback, drop me an email at bruno [at] brodrigues
[dot] co.

Enjoy!

4https://www.brodrigues.co/about/me/

10

https://raps-with-r.dev/
https://leanpub.com/raps-with-r
https://leanpub.com/raps-with-r
https://www.brodrigues.co/about/me/

1. Introduction

This book will not teach you about machine learning, statistics
or visualisation.

The goal is to teach you a set of tools, practices and project
management techniques that should make your projects easier
to reproduce, replicate and retrace. These tools and techniques
can be used right from the start of your project at a minimal
cost, such that once you're done with the analysis, you're also
done with making the project reproducible. Your projects are
going to be reproducible simply because they were engineered,
from the start, to be reproducible.

There are two main ideas in this book that you need to keep in
mind at all times:

« DRY: Don’t Repeat Yourself;
o« WIT: Write I'T down.

DRY WIT is not only the best type of humour, it is also the
best way to write reproducible analytical pipelines.

1.1. Who is this book for?

This book is for anyone that uses raw data to build any type of
output based on that raw data. This can be a simple quarterly

11

1. Introduction

report for example, in which the data is used for tables and
graphs, or a scientific article for a peer reviewed journal or even
an interactive web application. It doesn’t matter, because the
process is, at its core, always very similar:

Get the data;

Clean the data;

Write code to analyse the data;

Put the results into the final product.

This book will already assume some familiarity with program-
ming, and in particular the R programming language. However,
if you're comfortable with another programming language like
Python, you could still learn a lot from reading this book. The
tools presented in this book are specific to R, but there will al-
ways be an alternative for the language you prefer using, mean-
ing that you could apply the advice from this book to your needs
and preferences.

1.2. What is the aim of this book?

The aim of this book is to make the process of analysing data as
reliable, retraceable, and reproducible as possible, and do this
by design. This means that once you're done with the analysis,
you're done. You don’t want to spend time, which you often
don’t have anyways, to rewrite or refactor an analysis and make
it reproducible after the fact. We both know that this is not
going to happen. Once an analysis is done, it’s time to go to
the next analysis. And if you need to rerun an older analysis
(for example, because the data got updated), then you’ll simply
figure it out at that point, right? That’s a problem for future
you, right? Hopefully, future you will remember every quirk of

12

1.2. What is the aim of this book?

your code and know which script to run at which point in the
process, which comments are outdated and can be safely ignored,
what features of the data need to be checked (and when they
need to be checked), and so on... You better hope future you is
a more diligent worker than youl!

Going forward, I'm going to refer to a project that is repro-
ducible as a “reproducible analytical pipeline”, or RAP for short.
There are only two ways to make such a RAP; either you are
lucky enough to have someone on the team whose job is to turn
your messy code into a RAP, or you do it yourself. And this
second option is very likely the most common. The issue is, as
stated above, that most of us simply don’t do it. We are always
in the rush to get to the results, and don’t think about mak-
ing the process reproducible. This is because we always think
that making the process reproducible takes time and this time
is better spent working on the analysis itself. But this is a mis-
conception, for two reasons.

The first reason is that employing the techniques that we are
going to discuss in this book won’t actually take much time. As
you will see, they’re not really things that you “add on top of the
analysis”, but will be part of the analysis itself, and they will also
help with managing the project. And some of these techniques
will even save you time (especially testing) and headaches.

The second reason is that an analysis is never, ever, a one-shot.
Only the most simple things, like pulling out a number from
some data base may be a one-shot. And even then, chances are
that once you provide that number, you'll be asked to pull out a
variation of that number (for example, by disaggregating by one
or several variables). Or maybe you'll get asked for an update
to that number in six months. So you will learn very quickly to
keep that SQL query in a script somewhere to make sure that
you provide a number that is consistent. But what about more

13

1. Introduction

complex analyses? Is keeping the script enough? Keeping the
script is already a good start of course. The problem is that
very often, there is no script, or not a script for each step of the
analysis.

I've seen this play out many times in many different organisa-
tions. It’s that time of the year again, we have to write a report.
10 people are involved, and just gathering the data is already
complicated. Some get their data from Word documents at-
tached to emails, some from a website, some from a report from
another department that is a PDF.. I remember a story that a
senior manager at my previous job used to tell us: once, a client
put out a call for a project that involved helping them setting
up a PDF scraper. They periodically needed data from another
department that came in PDFs. The manager asked what was,
at least from our perspective, an obvious question: why can’t
they send you the underlying data from that PDF in a machine
readable format? They had never thought to ask. So my man-
ager went to that department, and talked to the people putting
that PDF together. Their answer? “Well, we could send them
the data in any format they want, but they’ve asked us to send
the tables in a PDF format”.

So the first, and probably most important lesson here is: when
starting to build a RAP, make sure that you talk with all the
people involved.

1.3. Prerequisites

You should be comfortable with the R programming language.
This book will assume that you have been using R for some
projects already, and want to improve not only your knowledge

14

1.4. What actually is reproducibility?

of the language itself, but also how to successfully manage com-
plex projects. Ideally, you should know about packages, how to
install them, you should have written some functions already,
know about loops and have some basic knowledge of data struc-
tures like lists. While this is not a book on visualisation, we
will be making some graphs using the {ggplot2} package, so if
you're familiar with that, that’s good. If not, no worries, visu-
alisation, data munging or data analysis is not the point of this
book. Chapter 2, Before we start should help you gauge how
easily you will be able to follow this book.

Ideally, you should also not be afraid of not using Graphical User
Interfaces (GUIs). While you can follow along using an IDE like
RStudio, I will not be teaching any features from any program
with a GUI. This is not to make things harder than they should
be (quite the contrary actually) but because interacting graphi-
cally with a program is simply not reproducible. So our aim is
to write code that can be executed non-interactively by a ma-
chine. This is because one necessary condition for a workflow to
be reproducible and get referred to as a RAP, is for the workflow
to be able to be executed by a machine, automatically, without
any human intervention. This is the second lesson of building
RAPs: there should be no human intervention needed to get
the outputs once the RAP is started. If you achieve this, then
your workflow is likely reproducible, or can at least be made
reproducible much more easily than if it requires some special
manipulation by a human somewhere in the loop.

1.4. What actually is reproducibility?

A reproducible project means that this project can be rerun
by anyone at 0 (or very minimal) cost. But there are different

15

1. Introduction

levels of reproducibility, and I will discuss this in the next section.

Let’s first discuss some requirements that a project must have
to be considered a RAP.

1.4.1. Using open-source tools to build a RAP is
a hard requirement

Open source is a hard requirement for reproducibility.

No ifs nor buts. And I'm not only talking about the code
you typed for your research paper/report/analysis. I'm talk-
ing about the whole ecosystem that you used to type your code
and build the workflow.

Is your code open? That’s good. Or is it at least available to
other people from your organisation, in a way that they could
re-execute it if needed? Good.

But is it code written in a proprietary program, like STATA,
SAS or MATLAB? Then your project is not reproducible. It
doesn’t matter if this code is well documented and written and
available on a version control system (internally to your company
or open to the public). This project is just not reproducible.
Why?

Because on a long enough time horizon, there is no way to re-
execute your code with the exact same version of the proprietary
programming language and on the exact same version of the
operating system that was used at the time the project was
developed. As I'm writing these lines, MATLAB, for example,
is at version R2022b. And buying an older version may not
be simple. I'm sure if you contact their sales department they
might be able to sell you an older version. Maybe you can even
simply re-download older versions that you've already bought

16

1.4. What actually is reproducibility?

from their website. But maybe it’s not that simple. Or maybe
they won’t offer this option anymore in the future, who knows?
In any case, if you google “purchase old version of Matlab” you
will see that many researchers and engineers have this need.

Old version of matlab

4 views (last 30 days)

[on29Nov201s 1 @ Link

Hallo after a few years we need to use again an old program written with matlab R12 6.0.0.88. We don't find the installation CD,
can we buy again this old version of the program? Thanks best regard

§3 0 Comments

Sign in to comment.

Sign in to answer this question.

&' Answers (1)

0 & Link

. 13 [on 29 Nov 2018

Have you tried running the old program on a more recent release of MATLAB?

MATLAB 6.0 (R12) is eighteen years old (released in November 2000) and | think it highly unlikely you'll be able to get
it working on a new operating system. The Windows system requirements lists several Windows versions on which that
release was supported, the newest of which was Windows ME which was released in September 2000. Microsoft
ended mainstream support for this OS in 2003 and ended extended support in July 2006 according to Wikipedia.

€3 0 Comments

Sign in to comment.

Figure 1.1.: Wanting to run older versions of analytics software
is a recurrent need.

And if you’re running old code written for version, say, R2008a,
there’s no guarantee that it will produce the exact same results
on version 2022b. And let’s not even mention the toolboxes (if
you're not familiar with MATLAB’s toolboxes, they’re the equiv-
alent of packages or libraries in other programming languages).
These evolve as well, and there’s no guarantee that you can
purchase older versions of said toolboxes. And it’s likely that

17

1. Introduction

newer versions of toolboxes cannot even run on older versions of
Matlab.

And let me be clear, what I'm describing here with MATLAB
could also be said for any other proprietary programs still com-
monly (unfortunately) used in research and in statistics (like
STATA, SAS or SPSS). And even if some, or even all, of the
editors of these proprietary tools provide ways to buy and run
older versions of their software, my point is that the fact that you
have to rely on them for this is a barrier to reproducibility, and
there is no guarantee they will provide the option to purchase
older versions forever. Also, who guarantees that the editors of
these tools will be around forever? Or, and that’s more likely,
that they will keep offering a program that you install on your
machine instead of shifting to a subscription based model?

For just $199 a month, you can execute your SAS (or whatever)
scripts on the cloud! Worry about data confidentiality? No
worries, data gets encrypted and stored safely on our secure
servers! Run your analysis from anywhere and don’t worry about
losing your work if your cat knocks over your coffee on your
laptop! And if you purchase the pro licence, for an additional
$100 a month, you can even execute your code in parallel!

Think this is science fiction? Google “SAS cloud” to see SAS’s
cloud based offering.

1.4.2. There are hidden dependencies that can
hinder the reproducibility of a project

Then there’s another problem: let’s suppose you've written a
nice, thoroughly tested and documented workflow, and made
it available on Github (and let’s even assume that the data is
available for people to freely download, and that the paper is

18

1.4. What actually is reproducibility?

open access). Or, if you're working in the private sector, you
did everything above as well, the only difference being that the
workflow is only available to people inside the company instead
of being available freely and publicly online.

Let’s further assume that you’ve used R or Python, or any other
open source programming language. Could this study/analysis
be said to be reproducible? Well, if the analysis ran on a pro-
prietary operating system, then the conclusion is: your project
is not reproducible.

This is because the operating system the code runs on can
also influence the outputs that your pipeline builds. There are
some particularities in operating systems that may make certain
things work differently. Admittedly, this is in practice rarely a
problem, but it does happen!, especially if you're working with
very high precision floating point arithmetic like you would do
in the financial sector for instance.

Thankfully, there is no need to change operating systems to deal
with this issue, and we will learn how to use Docker to safeguard
against this problem.

1.4.3. The requirements of a RAP

So where does that leave us? Basically, for something to be truly
reproducible, it has to respect the following bullet points:

e Source code must obviously be available and thoroughly
tested and documented (which is why we will be using Git
and Github);

Thttps://github.com /numpy /numpy /issues/9187

19

https://github.com/numpy/numpy/issues/9187

1. Introduction

 All the dependencies must be easy to find and install (we
are going to deal with this using dependency management
tools);

o To be written with an open source programming language
(nocode tools like Excel are by default non-reproducible
because they can’t be used non-interactively, and which is
why we are going to use the R programming language);

o The project needs to be run on an open source operating
system (thankfully, we can deal with this without having
to install and learn to use a new operating system, thanks
to Docker);

« Data and the paper/report need obviously to be accessible
as well, if not publicly as is the case for research, then
within your company. This means that the concept of
“scripts and/or data available upon request” belongs in
the trash.

Availability of data and material

Data available upon reasonable request.

Figure 1.2.: A real sentence from a real paper published in THE
LANCET Regional Health. How about make the
data available and I won’t scratch your car, how’s
that for a reasonable request?

1.5. Are there different types of
reproducibility?

Let’s take one step back: we live in the real world, and in the real
world, there are some constraints that are outside of our control.

20

1.5. Are there different types of reproducibility?

These constraints can make it impossible to build a true RAP,
so sometimes we need to settle for something that might not be
a true RAP, but a second or even third best thing.

In what follows, let’s assume this: in the discussion below, code
is tested and documented, so let’s only discuss the code running
the pipeline itself.

The worst reproducible pipeline would be something that works,
but only on your machine. This can be simply due to the fact
that you hardcoded paths that only exist on your laptop. Any-
one wanting to rerun the pipeline would need to change the
paths. This is something that needs to be documented in a
README which we assumed was the case, so there’s that. But
maybe this pipeline only runs on your laptop because the com-
putational environment that you're using is hard to reproduce.
Maybe you use software, even if it’s open source software, that
is not easy to install (anyone that tried to install R packages
on Linux that depend on the {rJava} package know what I'm
talking about).

So a least worse pipeline would be one that could be run more
easily on any similar machine to yours. This could be achieved
by not using hardcoded absolute paths, and by providing instruc-
tions to set up the environment. For example, in the case of R,
this could be as simple as providing a script called something like
install_deps.R that would be a call to install.packages().
It could look like this:

install.packages(c("packagel",
"package2",
etc))

The issue here is that you need to make sure that the right ver-
sions of the packages get installed. If your script uses {ggplot2}

21

1. Introduction

version 2.2.1, then users should install this version as well, and
by running the script above, the latest version of {ggplot2} (as
of writing, version 3.4.0) will get installed. Maybe that’s not a
problem, but it can be if your script uses a function from ver-
sion 2.2.1 that is not available anymore in the latest version (or
maybe its name got changed, or maybe it was modified somehow
and doesn’t provide the exact same result). The more packages
the script uses (and the older it is), the higher the likelihood that
some package version will not be compatible. There is also the
issue of the R version itself. Generally speaking, recent versions
of R seem to not be too bad when it comes to running older
code written in R. I know this because in 2022 I've run every
example that comes bundled with R since version 0.6.0 on the
then current version (as of writing) of R, version 4.2.2.

22

1.5. Are there different types of reproducibility?

Here is the result of this experiment:

1.00+
0.

o

® 0.50-

=
0.
0.00-

o

]
u1

[\
u1

o

version

which_cnd . error . warning . message . OK!

Figure 1.3.: Examples from older versions of R run most of the
time successfully on the current version of R

This graph shows the following: for each version of R, starting
with R version 0.6.0 (released in 1997), how well the examples
that came with a standard installation of R run on the current
version of R (version 4.2.2 as of writing). These are the examples
from the default packages like {base}, {stats}, {stats4}, and
so on. Turns out that more than 75% of the example code from
version 0.6.0 still work on the current version of R. A small
fraction output a message (which doesn’t mean the code doesn’t
work), some 5% raise a warning, which again doesn’t necessarily
mean that the code doesn’t work, and finally around 20% or so
produce errors. As you can see, the closer we get to the current

23

1. Introduction

release, the fewer errors get raised (if you want to run the code
for yourself, check out this Github repository?).

(But something important should be noted: just because some
old piece of code runs without error, doesn’t mean that the
result is exactly the same. There might be cases where the same
function returns different results on different versions of R.)

While this is evidence of R itself being quite stable through time,
there are studies that show a less rosy picture. In a recent study
(Trisovic et al. (2022) 3), some researchers tried to rerun up to
9000 R scripts downloaded from the Harvard Dataverse. There
were several issues when trying to rerun the scripts, which lead
to, and I quote the paper here, “[...] 74% of R files [failing] to
complete without error in the initial execution, while 56% failed
when code cleaning was applied, showing that many errors can
be prevented with good coding practices”.

The take-away message is that counting on the language itself
being stable through time as a sufficient condition for repro-
ducibility is not enough. We have to set up the code in a way
that it actually is reproducible.

So what does this all mean? This means that reproducibility is
on a continuum, and depending on the constraints you face your
project can be “not very reproducible” to “totally reproducible”.
Let’s consider the following list of anything that can influence
how reproducible your project truly is:

» Version of the programming language used;

« Versions of the packages/libraries of said programming lan-
guage used;

o Operating System, and its version;

2https://github.com/b-rodrigues/code_ longevity
3https://www.nature.com/articles/s41597-022-01143-6

24

https://github.com/b-rodrigues/code_longevity

1.5. Are there different types of reproducibility?

o Versions of the underlying system libraries (which often go
hand in hand with OS version, but not necessarily).

e And even the hardware architecture that you run all that
software stack on.

So by “reproducibility is on a continuum”, what I mean is that
you could set up your project in a way that none, one, two, three,
four or all of the preceding items are taken into consideration
when making your project reproducible.

This is not a novel, or new idea. Peng (2011) already discussed
this concept but named it the reproducibility spectrum. In part
2 of this book, I will reintroduce the idea and call it the “repro-
ducibility iceberg”.

Reproducibility Spectrum
Publication +

Publication Linked and Full

only Code Code e — replication

and data code and data

Not reproducible Gold standard

Figure 1.4.: The reproducibility spectrum from Peng’s 2011 pa-
per.

Let me just finish this introduction by discussing the last item
on the previous list: hardware architecture. You see, Apple has
changed the hardware architecture of their computers recently.
Their new computers don’t use Intel based hardware anymore,
but instead Apple’s own proprietary architecture (Apple Silicon)
based on the ARM specification. And what does that mean con-
cretely? It means that all the binary packages that were built for
Intel based Apple computers cannot run on their new computers

25

1. Introduction

(at least not without a compatibility layer). Which means that
if you have a recent M1 or M2 Macbook and need to install old
CRAN packages to rerun a project (and we will learn how to
do this later in the book), these need to be compiled to work
on Apple Silicon first. You cannot even install older versions of
R, unless you also compile those from source! Now I have read
about a compatibility layer called Rosetta which enables to run
binaries compiled for the Intel architecture on the ARM archi-
tecture, and maybe this works well with R and CRAN binaries
compiled for Intel architecture. Maybe, I don’t know. But my
point is that you never know what might come in the future, and
thus needing to be able to compile from source is important, be-
cause compiling from source is what requires the least amount of
dependencies that are outside of your control. Relying on bina-
ries is not future-proof (and which is again, another reason why
open-source tools are a hard requirement for reproducibility).

And for you Windows users, don’t think that the preceding para-
graph does not concern you. I think that it is very likely that
Microsoft will push in the future for OEM manufacturers to
build more ARM based computers. There is already an ARM
version of Windows after all, and it has been around for quite
some time, and I think that Microsoft will not kill that version
any time in the future. This is because ARM is much more
energy efficient than other architectures, and any manufacturer
can build its own ARM cpus by purchasing a license, which can
be quite interesting from a business perspective. For example in
the case of Apple Silicon cpus, Apple can now get exactly the
cpus they want for their machines and make their software work
seamlessly with it (also, further locking in their users to their
hardware). I doubt that others will pass the chance to do the
same.

Also, something else that might happen is that we might move

26

1.5. Are there different types of reproducibility?

towards more and more cloud based computing, but I think that
this scenario is less likely than the one from before. But who
knows. And in that case it is quite likely that the actual code
will be running on Linux servers that will likely be ARM based
because of energy and licensing costs. Here again, if you want
to run your historical code, you'll have to compile old packages
and R versions from source.

Ok, so this might seem all incredibly complicated. How on earth
are we supposed to manage all these risks and balance the im-
mediate need for results with the future need of rerunning an
old project? And what if rerunning this old project is not even
needed in the future?

This is where this book will help you. By employing the tech-
niques discussed in this book, not only will it be very easy and
quick to set up a project from the ground up that is truly repro-
ducible, the very fact of building the project this way will also
ensure that you avoid mistakes and producing results that are
wrong. It will be easier and faster to iterate and improve your
code, to collaborate, and ultimately to trust the results of your
pipelines. So even if no one will rerun that code ever again, you
will still benefit from the best practices presented in this book.
Let’s dive in!

27

Part |.

Part 1: Don’t Repeat
Yourself

29

Introduction

The first idea we are going to focus on is Don’t Repeat Yourself.
Simply by avoiding having to repeat yourself, you will naturally
implement best practices to make your pipelines reproducible.

Introduction

Part 1 will focus on teaching you the fundamental ingredients
to reproducibility. By fundamental ingredients I mean those
tools that you absolutely need to have in your toolbox before
even attempting to make a project reproducible. These tools
are so important that a good chunk of this book is dedicated to
them:

o Version control;
o Functional programming;
o Literate programming.

You might already be familiar with these topics, and maybe
already use them in your day to day. If that’s the case, you still
might want to at least skim part 1 before tackling part 2 of the
book, which will focus on another set of tools to actually build
reproducible analytical pipelines (RAPs).

So this means that part 1 will not teach you how to build re-
producible pipelines. But I cannot immediately start teaching
you how to build reproducible analytical pipelines without first
making sure that you understand the core concepts laid out
above. To help you understand these concepts, we will start
by analysing some data together. We are going to download,
clean and plot some data, and we will achieve this by writing
two scripts. These scripts will be written in a very typical non-
“software engineery” way, as to mimic how analysts, data sci-
entists or researchers without any formal training in computer

31

science would perform such an analysis. This does not mean
that the quality of the analysis will be low. But it means that,
typically, these programmers have delievering results fast, and
by any means necessary, as their top priority. My goal with this
book is to show you, and hopefully convince you, that by adopt-
ing certain simple ideas from software engineering it is possible
to deliver just as fast as before, but in a more consistent and
robust way.

32

2. Before we start

This is not an introductory book, so before tackling the topics
presented here, make sure that you are familiar with the different
topics presented below. If you read this chapter and everything
is obvious or known to you, then you should have no trouble
following along. If instead what you read here is cryptic, then
take some time to improve your understanding of these topics
first.

2.1. Essential knowledge

It’s important to know the parts that constitute R. Let’s make
something clear: R is not RStudio, or whatever interface you are
using to interact with R. R is a domain-specific interpreted pro-
gramming language. R is domain-specific because its primary
use is in performing statistics. Interpreted, because results get
returned immediately when you execute a script in the console.
In other words, when you write 1+1 in the console, you get back
2 immediately. There are programming languages, called com-
piled programming languages, that require code to be compiled
into binaries before execution. C is such a language. The fact
that R is interpreted makes interactive exploratory data anal-
ysis easy, but also introduces certain negative aspects. I will
discuss these in detail in the book. R’s console is an example of
a REPL — Read-FEval-Print-Loop — environment. Code gets read,

33

2. Before we start

evaluated, printed and the read state gets returned, starting the
loop over.

To make working with R easier, you should not write code in the
console and execute it, but instead write it in a text file. You can
keep these text files, update and share them with collaborators.
Such text files are called scripts. You could write these scripts
using the most basic text editor included in your operating sys-
tem (that would be Notepad.exe on Windows for example), but
you should instead use a text editor made specifically to make
programming easier. Popular choices among R users include
RStudio, Visual Studio Code, or maybe something more exotic
like Emacs combined with ESS (my personal choice). Whatever
text editor you choose, take time to configure it and learn how
to use it. You will spend many, many, many hours inside that
text editor. The code you write in that text editor is what’s go-
ing to feed you and your family. Learn your chosen text editor’s
keyboard shortcuts and other advanced features. This initial in-
vestment will pay for itself many times over. Also, you need to
know what an actual text file is. A document written in Word
(with the .docx extension) is not a text file. It looks like text,
but is not. The .docx format is a much more complex format
with many layers of abstraction. “True” plain text files can be
opened with the simplest text editor included in your operating
system. ['ve had students trying to create text files with word
processors like MS Word and then being confused when things
would not work.

As stated before, R is a domain-specific programming language
mainly used for doing statistics, or whatever modernized term
you may prefer like “data science”. Its base capabilities can
be extended by installing packages. For example, a base in-
stallation of R provides you with useful functions like mean ()
or sd(), to compute the average or standard deviation of a

34

2.1. Essential knowledge

vector of numbers, or rnorm() to compute random variates
from a Gaussian (Normal) distribution. However, there is no
function available to train a random forest. If you need to
train a random forest you need to install a package using the
install.packages("randomForest") command. This installs
the {randomForest} package (in the rest of the book, I will
surround package names with curly braces). The collection of
packages installed is called a “library”. Packages get downloaded
from CRAN, the Comprehensive R Archive Network. There is
no doubt in my mind that the reason R became so popular is
because it is quite easy to write packages for it; and this is
something that we will learn as well! Some packages are writ-
ten with other programming languages, very often Fortran or
C++. The code included in these packages is then compiled
and can be executed by R using a user-facing function. For ex-
ample, if you dig into the source code of the {randomForest}
package, you will find C and Fortran code. This is important
to know, because sometimes R packages need to be compiled by
install.packages(), and this compilation can sometimes fail
(especially on Linux, but more on that later in the book).

When you use R, you will load data sets, create plots, train
models, etc. These data sets, plots, models, are all objects and
they get saved in the global environment. To see a list of objects
currently available in the global environment, type 1s() in the R
console. When you quit R, you get asked to save the workspace:
this will save the current state of the global environment and
load it next time you start R. I highly recommend for you to
not save the workspace. If you are using RStudio you can change
this behaviour in the global options (under Workspace, set Save
workspace to .RData on exit to Never). Other editors might
have a similar option. Saving and loading the workspace makes
it impossible to start with a fresh R session (unless you start
R with the --vanilla flag), which can cause issues that are

35

2. Before we start

difficult to pinpoint.

You should also be comfortable with paths and your computer’s
file system. Comfortable means having no problems finding
where a file gets downloaded for example, or being able to navi-
gate to any folder, either through a GUI file browser or through
a terminal (if you're familiar with navigating your computer us-
ing the terminal, you will have an easier time with this book
than if you didn’t). I also highly recommend that you strive to
use relative paths in your scripts, and not absolute paths. In
other words: don’t start your scripts with a line such as:

setwd ("H: /Username/Projects/housing regression/")

but instead, use “Projects” if you're using RStudio, or similar
features from your preferred IDE. This way, you can use relative
paths instead. This makes collaboration much easier. Using
“Projects” in RStudio, if you need to load data, you can simply
write:

dataset <- read.csv("data.csv")

and don’t need to set working directories using setwd (), which
obviously will not exist on your collaborators computer.

There is also the {here} package that makes using relative paths
easier, but I won’t discuss it in this book. If you're interested
you can read this post!.

You should be familiar with writing functions. This book has a
whole chapter on functional programming, and I will teach you
how to write functions, but if you're already familiar with this,
then it will make going through that chapter easier.

Thttps://github.com/jennybc/here_here

36

https://github.com/jennybc/here_here

2.1. Essential knowledge

Finally, you should know how to ask for help. If you need help
with this book, feel free to open an issue on the book’s Github
repo here?, or open a thread on the book’s Leanpub forum (if you
bought a copy) over here®. Just like for this book, if you have an
issue with an R package, look for its repository: many packages’
source code is hosted on Github (but not always). You can also
try to reach out to the author, or open a thread on Stackoverflow.
Whatever you do, make sure that you do your homework first:

e Read the documentation. Maybe you're using the tool

wrong.

Take note of the error message. Error messages can be
cryptic sometimes, but as you gain in experience, you will
learn to decrypt them.

o Write down the simplest script possible that reproduces

the issue you're facing. This is called an MRE, “Minimal
Reproducible Example”. If you need to open a thread
asking for help, post this MRE, this will make helping you
much easier. For general advice on how to write an MRE,

you can read this classic blog post?.

Finally, keep in mind the following saying from my father, a

mason (the ones that lay bricks, not the ones meeting in secrecy

to govern the world):

The tools are always right. If you're using a tool
and it’s not behaving as expected, it is much more
likely that your expectations are wrong. Take this
opportunity to review your knowledge of the tool.

2https://github.com /b-rodrigues /rap4all
3https://community.leanpub.com/c/raps-with-r/
4https://jonskeet.uk/csharp/complete.html

37

https://github.com/b-rodrigues/rap4all
https://community.leanpub.com/c/raps-with-r/
https://jonskeet.uk/csharp/complete.html

3. Project start

In this chapter, we are going to work together on a very simple
project. This project will stay with us until the end of the book.
As we will go deeper into the book together, you will rewrite that
project by implementing the techniques I will teach you. By the
end of the book you will have built a reproducible analytical
pipeline. To get things going, we are going to keep it simple;
our goal here is to get an analysis done, that’s it. We won'’t
focus on reproducibility. We are going to download some data,
and analyse it, that’s it.

3.1. Housing in Luxembourg

We are going to download data about house prices in Luxem-
bourg. Luxembourg is a little Western European country the
author hails from that looks like a shoe and is about the size
of .98 Rhode Islands. Did you know that Luxembourg is a con-
stitutional monarchy, and not a kingdom like Belgium, but a
Grand-Duchy, and actually the last Grand-Duchy in the World?
Also, what you should know to understand what we will be do-
ing is that the country of Luxembourg is divided into Cantons,
and each Cantons into Communes. If Luxembourg was the USA,
Cantons would be States and Communes would be Counties (or
Parishes or Boroughs). What’s confusing is that “Luxembourg”
is also the name of a Canton, and of a Commune, which also has

39

3. Project start

the status of a city and is the capital of the country. So Lux-
embourg the country, is divided into Cantons, one of which is
called Luxembourg as well, cantons are divided into communes,
and inside the canton of Luxembourg, there’s the commune of
Luxembourg which is also the city of Luxembourg, sometimes
called Luxembourg City, which is the capital of the country.

Figure 3.1.: Luxembourg is about as big as the US State of
Rhode Island.

What you should also know is that the population is about
645,000 as of writing (January 2023), half of which are foreign-
ers. Around 400,000 persons work in Luxembourg, of which half
do not live in Luxembourg; so every morning from Monday to
Friday, 200,000 people enter the country to work and then leave
in the evening to go back to either Belgium, France or Germany,
the neighbouring countries. As you can imagine, this puts enor-
mous pressure on the transportation system and on the roads,

40

3.1. Housing in Luxembourg

but also on the housing market; everyone wants to live in Luxem-
bourg to avoid the horrible daily commute, and everyone wants
to live either in the capital city, or in the second largest urban
area in the south, in a city called Esch-sur-Alzette.

The plot below shows the value of the House Price Index over

time for Luxembourg and the European Union:

House price and sales index (2010 = 100)

210

[y
o]
o

| 150

OBS_VALUE

120

90

2010 2015 2020
TIME_PERIOD
geo EU == LU

Source: Eurostat

If you want to download the data, click here!.

Let us paste the definition of the HPI in here (taken from the
HPT’s metadata® page):

The House Price Index (HPI) measures inflation in the residen-
tial property market. The HPI captures price changes of all types
of dwellings purchased by households (flats, detached houses, ter-
raced houses, etc.). Only transacted dwellings are considered,

Thttps://is.gd/AETOir
Zhttps://archive.is/OrQwA, archived link for posterity.

41

https://github.com/b-rodrigues/rap4all/raw/master/datasets/prc_hpi_a__custom_4705395_page_linear.csv.gz
https://archive.is/OrQwA

3. Project start

self-build dwellings are excluded. The land component of the
dwelling is included.

So from the plot, we can see that the price of dwellings more
than doubled between 2010 and 2021; the value of the index is
214.81 in 2021 for Luxembourg, and 138.92 for the European
Union as a whole.

There is a lot of heterogeneity though; the capital and the com-
munes right next to the capital are much more expensive than
communes from the less densely populated north, for example.
The south of the country is also more expensive than the north,
but not as much as the capital and surrounding communes. Not
only is price driven by demand, but also by scarcity; in 2021,
0.5% of residents owned 50% of the buildable land for housing
purposes (Source: Observatoire de I’Habitat, Note 29, archived
download link?).

Our project will be quite simple; we are going to download some
data, supplied as an Excel file, compiled by the Housing Obser-
vatory (Observatoire de ’Habitat, a service from the Ministry
of Housing, which monitors the evolution of prices in the hous-
ing market, among other useful services like the identification
of vacant lots). The advantage of their data when compared to
Eurostat’s data is that the data is disaggregated by commune.
The disadvantage is that they only supply nominal prices, and
no index (and the data is trapped inside Excel and not ready for
analysis with R). Nominal prices are the prices that you read on
price tags in shops. The problem with nominal prices is that it
is difficult to compare them through time. Ask yourself the fol-
lowing question: would you prefer to have had 500€ (or USDs)
in 2003 or in 20237 You probably would have preferred them in
2003, as you could purchase a lot more with $500 then than now.

3https://archive.org/download /note-29 /note-29.pdf

42

https://archive.org/download/note-29/note-29.pdf
https://archive.org/download/note-29/note-29.pdf

3.1. Housing in Luxembourg

In fact, according to a random inflation calculator I googled, to
match the purchasing power of $500 in 2003, you’d need to have
$793 in 2023 (and I'd say that we find very similar values for €).
But it doesn’t really matter if that calculation is 100% correct:
what matters is that the value of money changes, and compar-
isons through time are difficult, hence why an index is quite
useful. So we are going to convert these nominal prices to real
prices. Real prices take inflation into account and so allow us to
compare prices through time.

So to summarise; our goal is to:

o Get data trapped inside an Excel file into a neat data
frame;

o Convert nominal to real prices using a simple method;

» Make some tables and plots and call it a day (for now).

We are going to start in the most basic way possible; we are sim-
ply going to write a script and deal with each step separately.

43

3. Project start

3.2. Saving trapped data from Excel

Getting data from Excel into a tidy data frame can be very
tricky. This is because very often, Excel is used as some kind
of dashboard or presentation tool. So data is made human-
readable, in contrast to machine-readable. Let us quickly dis-
cuss this topic as it is essential to grasp the difference between
the two (and in our experience, a lot of collective pain inflicted
to statisticians and researchers could have been avoided if this
concept was more well-known). The picture below shows an
Excel file made for human consumption:

E vente-maison-2010-2021 EIEY @ =
File Edit View Insert Format Data Tools Help Last edit was seconds ago
o @ B OT00% v $ % .0 00 123 Defatt(Ca. v 10 - B I & A & H =+ 1~ |7~
Al -
A B c D E F G H

1

2 S

3 WxtMsOURG

4 o |

5 = K -

. . < .

& Offres et prix annoncés pour la vente de maisons en 2010

7

g Précaution de lecture

g - les prix ne sont pas affichés pour les communes oftle nombre d'annances est inférieur 3 30 pour des raisons de représentativité
statistique (***)

10 - les prix sont présentés ici en euros courants, c'est-3-dire sans tenir compte de l'inflation.

1

5 Commune Nombre d'offres Prix moyen annoncé Prix mzuyen annoncé au

en € courant m* en € courant

13 Bascharage 192 593,698 3,604

14 Beaufort 266 461,160 2,903

135 Bech 65 621,760 3,281

LS Beckerich 176 444,499 2,868

17 Berdorf 111 504,041 3,056

18 Bertrange 264 795,339 4,266

9 Bettembourg 304 555,628 3,343

20 Bettendorf 94 495,074 3,235

21 Betzdorf 119 625,914 3,343

22 Bissen 70 516,466 3,322

Figure 3.2.: An Excel file meant for human eyes.

So why is this file not machine-readable? Here are some issues:

44

3.2. Saving trapped data from Excel

o The table does not start in the top-left corner of the spread-
sheet, which is where most importing tools expect it to be;

o The spreadsheet starts with a header that contains an im-
age and some text;

o Numbers are text and use “,” as the thousands separator;

e You don’t see it in the screenshot, but each year is in a
separate sheet.

That being said, this Excel file is still very tame, and going
from this Excel to a tidy data frame will not be too difficult.
In fact, we suspect that whoever made this Excel file is well
aware of the contradicting requirements of human and machine-
readable formatting of data, and strove to find a compromise.
Because more often than not, getting human-readable data into
a machine-readable format is a nightmare. We could call data
like this machine-friendly data.

If you want to follow along, you can download the Excel file here*
(downloaded on January 2023 from the luxembourguish open
data portal®). But you don’t need to follow along with code,
because I will link the completed scripts for you to download
later.

Each sheet contains a dataset with the following columns:

o Commune: the commune (the smallest administrative di-
vision of territory);

o Nombre d’offres: the total number of selling offers;

e Prix moyen annoncé en Euros courants: Average selling
price in nominal Euros;

o Priz moyen annoncé au m2 en Euros courants: Average
selling price in square meters in nominal Euros.

4https://is.gd/1vvBAc
Shttps://data.public.lu/en/datasets/prix-annonces-des-logements-par-
commune/

45

https://github.com/b-rodrigues/rap4all/raw/master/datasets/vente-maison-2010-2021.xlsx
https://data.public.lu/en/datasets/prix-annonces-des-logements-par-commune/
https://data.public.lu/en/datasets/prix-annonces-des-logements-par-commune/

3. Project start

For ease of presentation, I'm going to show you each step of the
analysis here separately, but I'll be putting everything together
in a single script once I'm done explaining each step. So first,
let’s load some packages:

library(dplyr)
library(purrr)
library(readxl)
library(stringr)
library(janitor)

Even though this book is not about analysing data per se, let me
just briefly explain what these packages do, in case you’re not
familiar with them. The {dplyr} package provides many func-
tions for data manipulation, for example aggregating group-wise.
{purrr} is a package for functional programming, a program-
ming paradigm that I'll introduce later in the book, {readx1}
reads in Excel workbooks, {stringr} is a package for manipu-
lating strings, and finally {janitor} (Firke 2023) provides some
very nice functions, to perform some common tasks like easily
rename every column of a data frame in snake case.

Next, the code below downloads the data, and puts it in a data
frame:

The url below points to an Excel file
hosted on the book’s github repository
url <- "https://is.gd/1vvBAc"

raw_data <- tempfile(fileext = ".xlsx")

download.file(url, raw_data,
method = "auto",

46

3.2. Saving trapped data from Excel

mode = "wb")
sheets <- excel sheets(raw_data)

read clean <- function(..., sheet){
read_excel(..., sheet = sheet) [>
mutate(year = sheet)

raw_data <- map(
sheets,
~read_clean(raw_data,
skip = 10,
sheet = .)
) >
bind rows() |>
clean names()

raw_data <- raw_data [>

rename (
locality = commune,
n_offers = nombre_doffres,

average_price_nominal_euros =
<~ Pprix_moyen_annonce_en_courant,
average price _m2 nominal_euros =
< prix_moyen_annonce_au_m2_en_courant,
average _price_m2_nominal_euros =
< prix_moyen_annonce_au _m2_en_courant
) 1>
mutate(locality = str_trim(locality)) [>
select(year, locality, n_offers,
o starts_with("average"))

47

3. Project start

If you are familiar with the {tidyverse} (Wickham et al. 2019)
the above code should be quite easy to follow. We start by
downloading the raw Excel file and saving the sheet names into
a variable. We then use a function called read_clean(), which
takes the path to the Excel file and the sheet names as an ar-
gument to read the required sheet into a data frame. We use
skip = 10 to skip the first 10 lines in each Excel sheet because
the first 10 lines contain a header. The last thing this function
does is add a new column called year which contains the year
of the data. We're lucky because the sheet names are the years:
“20107, “2011” and so on. We then map this function to the list
of sheet names, thus reading in all the data from all the sheets
into one list of data frames. We then use bind_rows (), to bind
each data frame into a single data frame, by row. Finally, we
rename the columns (by translating their names from French
to English) and only select the required columns. If you don’t
understand each step of what is going on, don’t worry too much
about it; this book is not about learning how to use R.

Running this code results in a neat data set:

raw_data

A tibble: 1,343 x 5

year locality n_offers
average price_nominal_euros
<chr> <chr> <dbl> <chr>
1 2010 Bascharage 192 593698.31000000006
2 2010 Beaufort 266 461160.29
3 2010 Bech 65 621760.22
4 2010 Beckerich 176 444498.68
5 2010 Berdorf 111 504040.85
6 2010 Bertrange 264 795338.87
7 2010 Bettembourg 304 555628.29

48

3.2. Saving trapped data from Excel

8 2010 Bettendorf 94 495074.38
9 2010 Betzdorf 119 625914 .47
10 2010 Bissen 70 516465.57

i 1,333 more rows
1 1 more variable: average price_m2 nominal_euros
<chr>

But there’s a problem: columns that should be of type numeric
are of type character instead (average price_nominal_euros
and average_price_m2_nominal_euros). There’s also another
issue, which you would eventually catch as you’ll explore the
data: the naming of the communes is not consistent. Let’s take
a look:

raw_data |>
filter(grepl("Luxembourg", locality)) |[>
count (locality)

A tibble: 2 x 2

locality n
<chr> <int>
1 Luxembourg 9
2 Luxembourg-Ville 2

We can see that the city of Luxembourg is spelled in two different
ways. It’s the same with another commune, Pétange:

raw_data |>

filter(grepl("P.tange", locality)) |[>
count (locality)

A tibble: 2 x 2
locality n

49

3. Project start

<chr> <int>
1 Petange 9
2 Pétange 2

WA

So sometimes it is spelled correctly, with an “é”, sometimes not.
Let’s write some code to correct both these issues:

raw_data <- raw_data [>
mutate (
locality = ifelse(grepl("Luxembourg-Ville",
< locality),
"Luxembourg",
locality),
locality = ifelse(grepl("P.tange",
- locality),
"Pétange",
locality)
) 1>
mutate(across(starts_with("average"),
as.numeric))

Warning: There were 2 warnings in “mutate() .

The first warning was:

i In argument: “across(starts_with("average"),
as.numeric) ~.

Caused by warning:

! NAs introduced by coercion

i Run “dplyr::last_dplyr_warnings()~ to see the 1

remaining
warning.

Now this is interesting — converting the average columns to
numeric resulted in some NA values. Let’s see what happened:

20

3.2. Saving trapped data from Excel

raw_data |>
filter(is.na(average_price_nominal_euros))

A tibble: 290 x 5

year locality n_offers
average _price_nomina-~1
<chr> <chr> <dbl>
<dbl>
1 2010 Consthum 29
NA
2 2010 Esch-sur-Sire 7
NA
3 2010 Heiderscheid 29
NA
4 2010 Hoscheid 26
NA
5 2010 Saeul 14
NA
6 2010 <NA> NA
NA
7 2010 <NA> NA
NA
8 2010 Total d'offres 19278
NA
9 2010 <NA> NA
NA
10 2010 Source : Ministére~ NA

NA
1 280 more rows
1 abbreviated name: 1: average price_nominal_euros

i 1 more variable: average_price_m2 nominal_euros
<dbl>

o1

3. Project start

It turns out that there are no prices for certain communes, but
that we also have some rows with garbage in there. Let’s go
back to the raw data to see what this is about:

Commune = Nombre d'offres = Prix moyen annoncé Prix m:)yen annoncé _
en € courant au m? en € courant

Consthum 29 * *

Esch-sur-Sire 7 * *

Heiderscheid 29 * *

Hoscheid 26 * *

Saeul 14 * *

|Moyenne nationale | | 569,216 3,251
|Tota| d'offres | 19,278|

Source : Ministére du Logement - Observatoire de I'Habitat (base prix 2010).

Figure 3.3.: Always look at your data.

So it turns out that there are some rows that we need to re-
move. We can start by removing rows where locality is miss-
ing. Then we have a row where locality is equal to “Total
d’offres”. This is simply the total of every offer from every
commune. We could keep that in a separate data frame, or
even remove it. The very last row states the source of the
data and we can also remove it. Finally, in the screenshot
above, we see another row that we don’t see in our filtered
data frame: one where n_offers is missing. This row gives the
national average for columns average prince_nominal_euros
and average_price_m2 _nominal euros. What we are going to
do is create two datasets: one with data on communes, and the
other on national prices. Let’s first remove the rows stating the
sources:

52

3.2. Saving trapped data from Excel

raw_data <- raw_data |>
filter(!grepl("Source", locality))

Let’s now only keep the communes in our data:

commune level data <- raw_data |>
filter(!grepl("nationale|offres", locality),
lis.na(locality))

And let’s create a dataset with the national data as well:

country_level <- raw_data |>
filter(grepl("nationale", locality)) [>
select(-n_offers)

offers_country <- raw_data |>
filter(grepl("Total d.offres", locality)) [>
select(year, n_offers)

country_level data <- full join(country level,

- offers_country) |[>
select(year, locality, n_offers, everything())
s >
mutate(locality = "Grand-Duchy of Luxembourg")

Joining with “by = join_by(year)"

Now the data looks clean, and we can start the actual analysis...
or can we? Before proceeding, it would be nice to make sure
that we got every commune in there. For this, we need a list of
communes from Luxembourg. Thankfully, Wikipedia has such

93

https://en.wikipedia.org/wiki/List_of_communes_of_Luxembourg
https://en.wikipedia.org/wiki/List_of_communes_of_Luxembourg

3. Project start

a listS.

An issue with scraping tables off the web is that they might
change in the future. It is therefore a good idea to save the
page by right clicking on it and then selecting save as, and then
re-hosting it. I use Github pages to re-host the Wikipedia page
above here’. 1 now have full control of this page, and won’t
get any bad surprises if someone decides to eventually update it.
Instead of re-hosting it, you could simply save it as any other
file of your project.

So let’s scrape and save this list:

current_communes <- "https://is.gd/lux_communes"
o >

rvest::read html() |[>

rvest: :html table() [>

purrr: :pluck(2) |[>

janitor::clean names() |[>

dplyr::filter(name_2 != "Name") |>

dplyr: :rename (commune

dplyr: :mutate(commune
- stringr::str_remove(commune, " .$"))

name 2) |>

We scrape the table from the re-hosted Wikipedia page using
{rvest}. rvest::html table() returns a list of tables from
the Wikipedia table, and then we use purrr: :pluck() to keep
the second table from the website, which is what we need (I made
the calls to the packages explicit, because you might not be famil-
iar with these packages). janitor::clean_names() transforms
column names written for human eyes into machine-friendly
names (for example Growth rate in % would be transformed

Shttps://w.wiki/6nPu
Thttps://is.gd/lux_ communes

o4

https://en.wikipedia.org/wiki/List_of_communes_of_Luxembourg
https://en.wikipedia.org/wiki/List_of_communes_of_Luxembourg
https://b-rodrigues.github.io/list_communes/

3.2. Saving trapped data from Excel

to growth_rate_in_percent) and then I use the {dplyr} pack-
age for some further cleaning and renaming; the very last step
removes a dagger symbol next to certain communes names, in
other words it turns “Commune 1”7 into “Commune”.

Let’s see if we have all the communes in our data:

setdiff (unique (commune level data$locality),
current communes$commune)

[1] "Bascharage" "Boevange-sur-Attert"
[3] "Burmerange" "Clémency"

[5] "Consthum" "Ermsdorf"

[7] "Erpeldange" "Eschweiler"
[9] "Heiderscheid" "Heinerscheid"
[11] "Hobscheid" "Hoscheid"

[13] "Hosingen" "Luxembourg"
[15] "Medernach" "Mompach"

[17] "Munshausen" "Neunhausen"
[19] "Rosport" "Septfontaines"
[21] "Tuntange" "Wellenstein"

[23] "Kaerjeng"

We see many communes that are in our commune level data,
but not in current_communes. There’s one obvious reason: dif-
ferences in spelling, for example, “Kaerjeng” in our data, but
“Kéerjeng” in the table from Wikipedia. But there’s also a less
obvious reason; since 2010, several communes have merged into
new ones. So there are communes that are in our data in 2010
and 2011, but disappear from 2012 onwards. So we need to do
several things: first, get a list of all existing communes from
2010 onwards, and then, harmonise spelling. Here again, we can
use a list from Wikipedia, and here again, I decide to re-host it
on Github pages to avoid problems in the future:

95

3. Project start

former_communes <-

< "https://is.gd/lux_former_communes" |>
rvest::read html() |[>
rvest::html table() [>
purrr: :pluck(3) |[>
janitor::clean_names() |>
dplyr::filter(year_dissolved > 2009)

former communes

A tibble: 20 x 3

name year_dissolved reason
<chr> <int> <chr>

1 Bascharage 2011 merged to form
Kaerje~

2 Boevange-sur—-Attert 2018 merged to form
Helper~

3 Burmerange 2011 merged into
Schengen

4 Clemency 2011 merged to form
Kaerje~

5 Consthum 2011 merged to form
Parc H~

6 Ermsdorf 2011 merged to form
Vallée~

7 Eschweiler 2015 merged into
Wiltz

8 Heiderscheid 2011 merged into
Esch-sur-~

9 Heinerscheid 2011 merged into
Clervaux

10 Hobscheid 2018 merged to form
Habscht

o6

11 Hoscheid
Parc H~

12 Hosingen
Parc H~

13 Mompach
Rospor~

14 Medernach
Vallée~

15 Munshausen
Clervaux

16 Neunhausen
Esch-sur-~

17 Rosport
Rospor-~

18 Septfontaines

Habscht

19 Tuntange
Helper~

20 Wellenstein
Schengen

3.2. Saving trapped data from Excel

2011

2011

2018

2011

2011

2011

2018

2018

2018

2011

merged
merged
merged
merged
merged
merged
merged
merged
merged

merged

to form

to form

to form

to form

into

into

to form

to form

to form

into

As you can see, since 2010 many communes have merged to form
new ones. We can now combine the list of current and former

communes, as well as harmonise their names:

communes <- unique(c(former_communes$name,
current communes$commune))
we need to rename some communes

Different spelling of these communes between
-~ wikipedia and the data

57

3. Project start

communes [which(communes == "Clemency")] <-
- "Clémency"
communes [which(communes == "Redange")] <-

- "Redange-sur-Attert"
communes [which(communes ==
- "Erpeldange-sur-Stire")] <- "Erpeldange"

communes [which(communes == "Luxembourg City")]
- <= "Luxembourg"

communes [which(communes == "Kéderjeng")] <-

» "Kaerjeng"

communes [which(communes == "Petange")] <-

- "Pétange"
Let’s run our test again:

setdiff (unique (commune level data$locality),
communes)

character(0)

Great! When we compare the communes that are in our data
with every commune that has existed since 2010, we don’t have
any commune that is unaccounted for. So are we done with
cleaning the data? Yes, we can now start with analysing the
data. Take a look here® to see the finalised script. Also read
some of the comments that I've added. This is a typical R script,
and at first glance, one might wonder what is wrong with it.
Actually, not much, but the problem if you leave this script as it
is, is that it is very likely that we will have problems rerunning
it in the future. As it turns out, this script is not reproducible.
But we will discuss this in much more detail later on. For now,
let’s analyse our cleaned data.

8https://is.gd/7TPhUjd

o8

https://raw.githubusercontent.com/b-rodrigues/rap4all/master/scripts/save_data.R

3.3. Analysing the data
3.3. Analysing the data

We are now going to analyse the data. The first thing we are
going to do is compute a Laspeyeres price index. This price
index allows us to make comparisons through time; for exam-
ple, the index at year 2012 measures how much more expensive
(or cheaper) housing became relative to the base year (2010).
However, since we only have one ‘good’ (housing), this index
becomes quite simple to compute: it is nothing but the prices at
year t divided by the prices in 2010 (if we had a basket of goods,
we would need to use the Laspeyeres index formula to compute
the index at all periods).

For this section, I will perform a rather simple analysis. I will
immediately show you the R script: take a look at it here®. For
the analysis I selected 5 communes and plotted the evolution of
prices compared to the national average.

This analysis might seem trivially simple, but it contains all the
needed ingredients to illustrate everything else that I'm going
to teach you in this book.

Most analyses would stop here: after all, we have what we need;
our goal was to get the plots for the 5 communes of Luxembourg,
Esch-sur-Alzette, Mamer, Schengen (which gave its name to the
Schengen Area!?) and Wincrange. However, let’s ask ourselves
the following important questions:

o How easy would it be for someone else to rerun the analy-
sis?

o How easy would it be to update the analysis once new data
gets published?

o How easy would it be to reuse this code for other projects?

Yhttps://is.gd/qCJIEDbi
Ohttps://en.wikipedia.org/wiki/Schengen_Area

99

https://raw.githubusercontent.com/b-rodrigues/rap4all/master/scripts/analysis.R
https://en.wikipedia.org/wiki/Schengen_Area

3. Project start

o What guarantee do we have that if the scripts get run in 5
years, with the same input data, we get the same output?

Let’s answer these questions one by one.

3.4. Your project is not done

3.4.1. How easy would it be for someone else to
rerun the analysis?

The analysis is composed of two R scripts, one to prepare the
data, and another to actually run the analysis proper. Perform-
ing the analysis might seem quite easy, because each script con-
tains comments as to what is going on, and the code is not
that complicated. However, we are missing any project-level
documentation that would provide clear instructions as to how
to run the analysis. This might seem simple for us who wrote
these scripts, but we are familiar with R, and this is still fresh
in our brains. Should someone less familiar with R have to run
the script, there is no clue for them as to how they should do
it. And of course, should the analysis be more complex (sup-
pose it’s composed of dozens of scripts), this gets even worse. It
might not even be easy for you to remember how to run this in
5 months!

And what about the required dependencies? Many packages
were used in the analysis. How should these get installed? Ide-
ally, the same versions of the packages you used and the same
version of R should get used by that person to rerun the analy-
sis.

All of this still needs to be documented, but listing the packages
that were used for an analysis and their versions takes quite

60

3.4. Your project is not done

some time. Thankfully, in part 2, we will learn about the {renv}
package to deal with this in a couple lines of code.

3.4.2. How easy would it be to update the
project?

If new data gets published, all the points discussed previously
are still valid, plus you need to make sure that the updated data
is still close enough to the previous data such that it can pass
through the data cleaning steps you wrote. You should also
make sure that the update did not introduce a mistake in past
data, or at least alert you if that is the case. Sometimes, when
new years get added, data for previous years also get corrected,
so it would be nice to make sure that you know this. Also, in
the specific case of our data, communes might get fused into a
new one, or maybe even divided into smaller communes (even
though this has not happened in a long time, it is not entirely
out of the question).

In summary, what is missing from the current project are enough
tests to make sure that an update to the data can happen
smoothly.

3.4.3. How easy would it be to reuse this code
for another project?

Said plainly, not very easy. With code in this state you have
no choice but to copy and paste it into a new script and change
it adequately. For re-usability, nothing beats structuring your
code into functions and ideally you would even package them.
We are going to learn just that in future chapters of this book.

61

3. Project start

But sometimes you might not be interested in reusing code for
another project: however, even if that’s the case, structuring
your code into functions and packaging them makes it easy to
reuse code even inside the same project. Look at the last part of
the analysis.R script: we copied and pasted the same code 5
times and only slightly changed it. We are going to learn how not
to repeat ourselves by using functions and you will immediately
see the benefits of writing functions, even when simply reusing
them inside the same project.

3.4.4. What guarantee do we have that the
output is stable through time?

Now this might seem weird: after all, if we start from the same
dataset, does it matter when we run the scripts? We should be
getting the same result if we build the project today, in 5 months
or in 5 years. Well, not necessarily. While it is true that R is
quite stable, this cannot necessarily be said of the packages that
we use. There is no guarantee that the authors of the packages
will not change the package’s functions to work differently, or
take arguments in a different order, or even that the packages
will all be available at all in 5 years. And even if the packages are
still available and function the same, bugs in the packages might
get corrected which could alter the result. This might seem like
a non-problem; after all, if bugs get corrected, shouldn’t you
be happy to update your results as well? But this depends on
what it is we’re talking about. Sometimes it is necessary to
reproduce results exactly as they were, even if they were wrong,
for example in the context of an audit.

So we also need a way to somehow snapshot and freeze the
computational environment that was used to create the project
originally.

62

3.5. Conclusion
3.5. Conclusion

We now have a basic analysis that has all we need to get started.
In the coming chapters, we are going to learn about topics that
will make it easy to write code that is more robust, better doc-
umented and tested, and most importantly easy to rerun (and
thus to reproduce the results). The first step will actually not
involve having to start rewriting our scripts though; next, we
are going to learn about Git, a tool that will make our life easier
by versioning our code.

63

4. Version control with Git

Modern software development would be impossible without ver-
sion control systems, and the same goes for building analytical
pipelines that are reproducible and robust. It doesn’t really mat-
ter what the output of the pipeline is: a simple graph, a report
with a statistical analysis, a scientific publication, a trained ma-
chine learning model that you want to hook to an API.. if the
code to the project is not versioned, you incur major risks and
the pipeline is not reproducible.

But what is version control anyway?

Version control tools make it easy to keep track of the changes
that were made to text files (like R scripts). Any change made
to any file of a project is catalogued, making it possible to trace
back how the file changed, who made the changes, and when
these changes were made. Using version control it is also quite
easy to collaborate on a project by forcing team members to
deal explicitly with the potential conflicts that might arise when
the same file got changed by different people at the same time.
Should your computer get lost, stolen, or explode, your projects
are safely backed up on a server: this is because version control
tools make use of a server which keeps track of all the changes
(and in some cases, this server is actually your team-mates’ com-
puters!)

Version control tools also make it easy to experiment with new
ideas. You can start new branches which essentially make a

65

4. Version control with Git

copy of your current project. In this new branch, you can safely
experiment with new features, and if the experiments are not
conclusive, you can simply discard this branch: the original copy
of your project will remain untouched. We will also use branches
to implement features, fix bugs quickly, and manage the project
in a paradigm called trunk-based development.

There are several version control tools out there, but Git is
undoubtedly the most popular one. You might have heard of
Github; this is a service that hosts repositories for your projects,
and provides other project management tools such as an issue
tracker, project wiki, feature requests.. and also very impor-
tantly continuous integration. Don’t worry if this all sounds very
abstract: by the end of the next chapter you will have all the
basic knowledge to use Git and Github.com for your projects.

Git is a tool that you must install on your computer to get
started. Once Git is installed, you can immediately start using
it; you don’t need to open an account on Github (or a similar
service), but it is recommended to make collaboration easier (it
is possible to collaborate with several people using Git without
a service like Github, by setting up a bare repository on a server
or on a network drive you control, but this is outside the scope

of this book).

You should know that Github offers private repositories for free,
so if you don’t want your work to be accessible to the public,
that is possible. Only people that you invite to your private
repositories will be able to see the code and collaborate with
you. It is also possible that your work place has set up a self-
hosted Git platform, ask your I'T department! Usually these self-
hosted platforms are Gitea or Gitlab instances. Gitea, Gitlab,
Bitbucket, Codeberg, these are all similar services to Github.
All have their advantages and disadvantages.

66

The advantages of Github are twofold:

o It has a very large community of users;
« Its continuous integration service is incredibly useful, and
free for up to 2000 minutes a month.

Disadvantages are:

o It has been bought by Microsoft in 2018;
« It is not possible to self-host an instance of Github (not
for free at least).

The fact it is owned by Microsoft may not seem like an issue,
but Microsoft’s track record of previous acquisitions is open to
question (Nokia, Skype), and the recent discussions about using
source code hosted on Github to train machine learning mod-

els (Copilot)! can make one uneasy about relying too much on
Github.

So while we are going to use Github to host our projects in the
remainder of this book, almost everything you are going to learn
will be easily transferable to another code hosting platform such
as Gitlab or Bitbucket, should you want to switch (or if your
workplace has a self-hosted instance from one of Github’s com-
petitors). Installing and configuring Git will be exactly the same
regardless of the hosting service we use, and all the commands
we will use to actually interact with our repositories will be the
same as well. So why did I write almost everything is the same
across any of the code hosting platforms? Well, the two advan-
tages I cited above really give Github an edge; many developers,
researchers and data scientists have a Github account already
and so if one day you need to collaborate with people, chances
are they have an account on Github and not on another code
hosting platform.

Thttps://is.gd/rQgCj8

67

https://web.archive.org/web/20230130103241/https://www.theverge.com/2021/7/7/22561180/github-copilot-legal-copyright-fair-use-public-code
https://web.archive.org/web/20230130103241/https://www.theverge.com/2021/7/7/22561180/github-copilot-legal-copyright-fair-use-public-code
https://web.archive.org/web/20230130103241/https://www.theverge.com/2021/7/7/22561180/github-copilot-legal-copyright-fair-use-public-code

4. Version control with Git

But what really sets up Github.com apart is Github Actions,
Github’s continuous integration service. Github Actions is lit-
erally a computer in the cloud that you can use to run a set of
actions each time you interact with the repository (or at defined
moments as well). For example, it would be possible to run au-
tomated tests each time a collaborator uploads some changes to
the project. This way, we can make sure that no change intro-
duced a bug. Or take this book; each time I write and push a
new section or chapter to Github, the website, PDF and Epub
of this book get re-generated and updated automatically. Each
Github account gets 2000 minutes a month of free computing
time, which is really a lot. In part 2, we will make use of Github
Actions to run our RAP in the cloud, by simply pushing updates
to our code on Github.

By the way, if you're using a cloud service like Dropbox,
Onedrive, and the like, DO NOT put projects tracked by Git
in them! I really need to stress this: do not track projects with
both something like Dropbox and Git. This is because Dropbox
and similar services do not deal gracefully with conflicts: if two
collaborators change the same file, Dropbox makes two copies
of the files. One of the collaborators then has to manually deal
with the conflict. The issue is that inside a project that is being
tracked by Git, there is a hidden folder with many files that get
used for synching the project and making sure that everything
runs smoothly. If you put a Git-enabled project inside a
Dropbox folder, these files will get accessed simultaneously
by different people, and Dropbox will start making copies of
these because of conflicts. This really messes up the project
and can lead to data loss. Let Git handle the tracking and
the collaborating for you. It might seem more complex than
a service like Dropbox, and it is, but it is immensely more
powerful, and what steep learning curve it might have, it more
than makes up for it with the many features it makes available

68

4.1. Installing Git and opening a Github account

at your fingertips. Unlike Dropbox (or similar services), Git
deals with conflicts not on a per-file basis, but on a per-line
basis. So if two collaborators change the same file, but different
lines of this same file, there will be no conflict: Git will handle
the merge on its own.

Finally, before starting, there is something important that you
need to understand, and people sometimes get confused by it:
if a repository is public, this does not mean that anyone can
make changes to the code. What this means is that anyone can
fork the repository (essentially making a copy of the repository
to their Github account) and then suggest some changes in a
so-called pull request. The maintainer and owner of the original
project can then accept these edits or not.

In the remainder of this chapter, you are going to learn how to set
up Git on your machine, open a Github account and start using
it right away. Then, I'm going to discuss several scenarios:

« how to collaborate, as a team, on a project;
e how to contribute to someone else’s project.

4.1. Installing Git and opening a Github
account

Git is a program that you install on your computer. If you're
running a Linux distribution, chances are Git is already installed.
Try to run the following command in a terminal to see if this is
the case:

which git

69

4. Version control with Git

If a path like /usr/bin/git gets shown, congratulations, you
can skip the rest of this paragraph. If something like:

/usr/bin/which: no git in
< (/home/username/.local/bin:
« /home/username/bin:etc...)

gets shown instead, then this means that Git is not installed
on your system. To install Git, use your distribution’s package
manager, as it is very likely that Git is packaged for your system.
On Ubuntu, arguably the most popular Linux distribution, this
means running:

sudo apt-get update
sudo apt-get install git

If you're using Ubuntu, you may use apt instead of apt-get.
Both commands are basically interchangeable, use whatever
you're used to. I've first used Ubuntu in 2008, and even though
I don’t use it anymore as my daily Linux distro (that honor
goes to openSUSE), T still use apt-get out of habit.

On macOS and Windows, follow the instructions from the Git
Book?. It should be as easy as running an installer for any
program.

Depending on your operating system, a graphical user interface
might have been installed with Git, making it possible to inter-
act with Git outside of the command line. It is also possible to
use Git from within RStudio and many other editors have inter-
faces to Git as well. We are not going to use any graphical user
interface, however. This is because there is no common, uni-
versal graphical user interface; they all work slightly differently.

https://is.gd/9HZqW4

70

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

4.1. Installing Git and opening a Github account

The only universal is the command line. Also, learning how to
use Git via the command line will make it easier the day you
will need to use it from a server, which will very likely happen.
It also makes my job easier: it is simpler to tell you which com-
mands to run and explain them to you than littering the book
with dozens upon dozens of screenshots that might get outdated
as soon as a new version of the interface gets released.

Don’t worry, using the command line is not as hard as it
sounds.

If you don’t already have a Github account, now is the time
to create one. Just go over to https://github.com/ and sim-
ply follow the instructions and select the free tier to open your
account.

O Search of jump to... | Ppullrequests Issues Codespaces Marketplace Explore o +- &
Create your first project Following Foryou Beta
Ready to start building? Create a Start coding instantly %
repository for a new idea o bring with GitHub
over an existing repository to keep . . R . Codespaces
contributing to it Discover interesting projects and Spin up faly configured
_ people to populate your personal news dev emirodments on
powerful WMs that start
feed. in seconds. Get up to 60

nport repository
Import repository)) hours 2 month of free
Your news feed helps you keep up with recent activity on time.

Recent activity repositories you watch or star and people you follow.

Get started

Winen you take act

Explore GitHub

Latest changes

Q PraTip! The feed shows you events from people you fallow and repasitories you watch or Yesterday
star Category Ferms on GitHub
R Subscribe to your news feed Discussions
2 days ago
- Persana is now a GitHub secret
O © 2023 Githuk, Inc Blog AP Terms
scanning partner
About Privacy -
op Doce 3 days ago
Contact GitHub Actions - Updating the
GitHub default GITHUB_TOKEN..
Pricing I oy a3

Add mere social links to your
user profile

View changelog

Figure 4.1.: This is your Github dashboard.

71

https://github.com/

4. Version control with Git

In the next section, we are going to learn some basic Git com-
mands by versioning the two scripts that we wrote before.

4.2. Git superbasics

We are going to use the two scripts that we wrote in the previ-
ous section. If you want to follow along, create a folder called
housing and put the two scripts we developed before in there:

« save_data.R: https://is.gd/7PhUjd
« analysis.R: https://is.gd/qCJEbi

Open the folder that contains the two scripts in a file explorer.
On most Linux desktop environments you should be able to
right-click inside that folder anywhere on a blank space and
select an option titled something like “Open Terminal here”. If
you're using Windows, you can pretty much do the same but
look instead for the option titled “Open Git Bash here”. On
macOS, you need to first activate this option. Simply google
for “open terminal at folder macOS” and follow the instructions.
It is also possible to drag and drop a folder into a terminal
which will then open the correct path in the terminal. Another
option, of course, is to simply open a terminal and navigate to
the correct folder using cd (change directory, this should work
the same on Windows, macOS and Linux):

cd /home/user/housing/

Make sure that you are in the right folder by listing the contents
of the folder:

72

https://is.gd/7PhUjd
https://is.gd/qCJEbi

4.2. Git superbasics

1s

From now on, make sure to type the commands you see in the
terminal (on Linux and macOS) or in the Git Bash terminal
on Windows. To distinguish the terminal from the R command
line prompt, the prompt of a terminal (or Git Bash terminal
on Windows) will start with owner@localhost. owner is the
username of the project manager in our examples from now
on, and the computer owner used by this project manager is
called localhost (this prompt can look different on your ma-
chine, sometimes the full path to the current working directory
is listed instead). So here is what happens when owner runs 1s
on the root directory of the project:

owner@localhost $ 1s
analysis.R save_data.R

(On Linux you could also try 11 which is often available. It is
an alias for 1s -1 which provides a more detailed view. There’s
also 1s -la which also lists hidden files.)

Make sure that you see the two scripts being listed when running
1s. If not, this means that you are in the wrong directory, so
make sure that you open the terminal in the correct folder.

It’s now time to start tracking these files using Git. In the
same terminal in which we ran 1s, run now the following git
command:

owner@localhost $ git init

73

4. Version control with Git

hint: Using 'master' as the name for the initial

- branch.
hint: This default branch name is subject to
- change.

hint: To configure the initial branch name to

-~ use in all of your

hint: new repositories, which will suppress this
-~ warning, call:

hint:

hint: git config --global init.defaultBranch
<~ <name>

hint:

hint: Names commonly chosen instead of 'master'
< are 'main',

hint: 'trunk' and 'development'. The

- Jjust-created branch can be

hint: renamed via this command:

hint:

hint: git branch -m <name>

Initialized empty Git repository in

- /home/user/housing/.git/

Take some time to read the hints. Many git commands give you
hints and it’s always a good idea to read them. This hint here
tells us that the default branch name is “master” and that this is
subject to change. Think of a branch as a version of your code.
The “master” branch will hold the default version of your code.
But you could create a branch called “dev” that would contain
a version of the code with features that are still in development.
There is nothing special about the default, “master” branch,
and it could have been called anything else. For example, if you
create a repository on Github first, instead of creating it on your
computer, the default branch will be called “main”. You need to

74

4.2. Git superbasics

pay attention to this, because when we will start interacting with
our Github repository, we need to make sure that we have the
right branch name in mind. Also, note that because the “master”
branch is the most important branch, it gets sometimes referred
to as the “trunk”. Some teams that use trunk-based development
(which T will discuss in the next chapter) even name this branch
“trunk”.

Let’s now run this other git command:

owner@localhost $ git status

On branch master
No commits yet

Untracked files:
(use "git add <file>..." to include in what

< will be committed)
analysis.R
save_data.R

nothing added to commit but untracked files
- present (use "git add" to track)

Git tells us quite clearly that it sees two files, but that they’re
currently not being tracked. So if we would modify them, Git
would not keep track of the changes. So it’s a good idea to just
do what Git tells us to do: let’s add them so that Git can track
them:

owner@localhost $ git add

5

4. Version control with Git

Nothing specified, nothing added.

hint: Maybe you wanted to say 'git add .'?

hint: Turn this message off by running

hint: "git config advice.addEmptyPathspec false"

Shoot, simply running git add does not do us any good. We
need to specify which files we want to add. We can name them
one by one, for example git add filel.R file2.txt, but if
we simply want to track all the files in the folder, we can simply
use the . placeholder:

owner@localhost $ git add .

No message this time... is that a good thing? Let’s run git
status and see what’s going on:

owner@localhost $ git status

On branch master
No commits yet

Changes to be committed:

(use "git rm --cached <file>..." to unstage)
new file: analysis.R
new file: save_data.R

Nice! Our two files are being tracked now, so we can commit the
changes. Committing means that we are happy with our work,
and we can snapshot it. These snapshots then get uploaded to
Github by pushing them. This way, the changes will be available
for our coworkers for them to pull. T'll explain what this means

76

4.2. Git superbasics

later, so don’t worry if this is confusing, it won’t be by the end
of the chapter. Also, you should know that there is a special file,
called .gitignore, that allows you to list files or folders that
you want Git to ignore. This can be useful in cases where you
are working with sensitive data and don’t want it to be uploaded
to Github. We will not use the .gitignore file just yet, but will
do so in part two of the book. So for now, just remember that
this is an option.

We are now ready to commit our files. Each commit must have
a commit message, and we can write this message as an option
to the git commit command:

owner@localhost $ git commit -m "Project start"

The -m option is there to specify the message for the commit.
Before pushing the commit, let’s run git status again:

owner@localhost $ git status

On branch master
nothing to commit, working tree clean

This means that every change is accounted for in a commit. So
if we were to push now, we could then set our computer on fire:
every change would be safely backed up on Github.com. We can
also choose to not push yet, and keep working and committing.
For example, we could commit 5 times and just push once: all
of the 5 commits would be pushed to Github.com.

Let’s do just that by changing one file. Open analysis.R in
any editor and simply change the start of the script by adding
one line. So go from:

7

4. Version control with Git

library(dplyr)
library(ggplot2)
library(purrr)
library(tidyr)

To:

This script analyses housing data for
- Luxembourg

library(dplyr)
library(ggplot2)
library(purrr)
library(tidyr)

and now run git status again:

owner@localhost $ git status

On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will
- be committed)
(use "git restore <file>..." to discard
- changes in working directory)
modified: analysis.R

no changes added to commit (use "git add" and/or
-~ "git commit -a")

Because the file is being tracked, Git can now tell us that some-
thing changed and that we did not commit this change. So if

78

4.2. Git superbasics

our computer would self-combust, these changes would get lost
forever. Better commit them and push them to Github.com as
soon as possible!

Remember, first, we need to add these changes to a commit
using git add .:

owner@localhost $ git add .

(You can run git status at this point to check if the file was
correctly added to be committed.)

Then, we need to commit the changes and add a nice commit
message:

owner@localhost $ git commit -m "Added a comment
-~ to analysis.R"

Try to keep commit messages as short and as explicit as possible.
This is not always easy, but it really pays off to strive for short,
clear messages. Also, ideally, you would want to keep commits as
small as possible, ideally one commit per change. For example,
if you're adding and amending comments in scripts, once you're
done with that make this a commit. Then, maybe clean up some
code. That’s another, separate commit. This makes rolling back
changes or reviewing them much easier. This will be crucial later
on when we will use trunk-based development to collaborate
with our teammates on a project. It is generally not a good idea
to code all day and then only push one single big fat commit at
the end of the day, but that is what happens very often...

By the way, even if our changes are still not on Github.com, we
can still roll back to previous commits. For example, suppose
that I delete the file accidentally by running rm analysis.R:

79

4. Version control with Git

owner@localhost $ rm analysis.R

Let’s run git status and look for the changes (it’s a line start-
ing with the word deleted):

On branch master
Changes not staged for commit:
(use "git add/rm <file>..." to update what
o will be committed)
(use "git restore <file>..." to discard
- changes in working directory)
deleted: analysis.R

no changes added to commit (use "git add" and/or
- "git commit -a")

Yep, analysis.R is gone. And deleting on the console usually
means that the file is gone forever. Well technically no, there are
still ways to recover deleted files using certain tools, but since
we were using Git we can use it to recover the files! Because we
did not commit the deletion of the file, we can simple tell Git to
ignore our changes. A simple way to achieve this is to stash the
changes, and then drop (or delete) the stash:

owner@localhost $ git stash

Saved working directory and index state WIP on
- master: \
ab43b4b Added a comment to analysis.R

So the deletion was stashed away, (so in case we want it back
we could get it back with git stash pop) and our project was

80

4.2. Git superbasics

rolled back to the previous commit. Simply take a look at the
files:

owner@localhost $ 1ls

analysis.R save_data.R

There it is! You can get rid of the stash with git stash drop.
But what if we had deleted the file and committed the change?
In this scenario, we could not use git stash, but we would need
to revert to a commit. Let’s try, first let me remove the file:

owner@localhost $ rm analysis.R
and check the status with git status:

On branch master
Changes not staged for commit:
(use "git add/rm <file>..." to update what
o will be committed)
(use "git restore <file>..." to discard
- changes in working directory)
deleted: analysis.R

no changes added to commit (use "git add" and/or
-~ "git commit -a"

Let’s add these changes and commit them:

owner@localhost $ git add .

81

4. Version control with Git

owner@localhost $ git commit -m "Removed
- analysis.R"

[master 8e51867] Removed analysis.R
1 file changed, 131 deletions(-)
delete mode 100644 analysis.R

What’s the status now?

owner@localhost $ git status

On branch master

nothing to commit, working tree clean
Now, we’ve done it! git stash won’t be of any help now. So
how to recover our file? For this, we need to know to which
commit we want to roll back. Each commit not only has a
message, but also an unique identifier that you can access with
git log:

owner@localhost $ git log

commit 8e51867dcb5ae89e5f2ab2798be8920e703£73455

& (HEAD -> master)

Author: User <owner@mailbox.com>

Date: Sun Feb 5 17:54:30 2023 +0100

Removed analysis.R

commit ab43b4b1069cd987685253632827f£19d7a402b27

82

4.2. Git superbasics

Author: User <owner@mailbox.com>
Date: Sun Feb 5 17:41:52 2023 +0100

Added a comment to analysis.R

commit df2beecba0101304f1b56e300a3cd713ce7366e5
Author: User <owner@mailbox.com>
Date: Sun Feb 5 17:32:26 2023 +0100

Project start

The first one from the top is the last commit we’ve made. We
would like to go back to the one with the message “Added a
comment to analysis.R”. See the very long string of characters
after “commit”? That’s the commit’s unique identifier, called
hash. You need to copy it (or only like the first 10 or so char-
acters, that’s enough as well). By the way, depending on your
terminal and operating system, git log may open less to view
the log. less is a program that makes it easy to view long doc-
uments. Quit it by simply pressing q on your keyboard. We
are now ready to revert to the right commit with the following
command:

owner@localhost $ git revert
- ab43b4b1069cd98768. .HEAD

and we're done! Check that all is right by running 1s to see that
the file magically returned, and git log to read the log of what
happened:

owner@localhost $ git log

83

4. Version control with Git

commit b7£f82ee119df52550e9cala8da2d81281e6aach8
& (HEAD -> master)

Author: User <owner@mailbox.com>

Date: Sun Feb 5 18:03:37 2023 +0100

Revert "Removed analysis.R"

This reverts commit
< 8eb1867dc5ae89e5f2ab2798be8920e703£73455.

commit 8e51867dcbae89e5f2ab2798be8920e703£73455
~ (HEAD -> master)

Author: User <owner@mailbox.com>

Date: Sun Feb 5 17:54:30 2023 +0100

Removed analysis.R

commit ab43b4b1069cd987685253632827f19d7a402b27
Author: User <owner@mailbox.com>
Date: Sun Feb 5 17:41:52 2023 +0100

Added a comment to analysis.R
commit df2beecba0101304f1b56e300a3cd713ce7366e5
Author: User <owner@mailbox.com>

Date: Sun Feb 5 17:32:26 2023 +0100

Project start

Using a range of commits in git revert reverts all the com-
mits from the starting commit (not included) to the last com-
mit. In this example, because only the commit starting with
8e51867dcbh was included in that range, only this commit was

84

4.3. Git and Github

reverted. You could have achieved the same result with git
revert 8e51867dch.

This small example illustrates how useful Git is, even without us-
ing Github, and even if working alone on a project. At the very
least it offers you a way to simply walk back changes and gives
you a nice timeline of your project. Maybe this does not impress
you much, because we live in a world where cloud services like
Dropbox made things like this very accessible. But where Git
(with the help of a service like Github) really shines is when col-
laboration is needed. Git and code hosting services like Github
make it possible to collaborate at very large scale: thousands
of developers contribute to the Linux kernel, arguably the most
successful open-source project ever, powering most of today’s
smartphones, servers, supercomputers and embedded comput-
ers,®> and you can use these tools to collaborate at a smaller
scale very efficiently as well.

4.3. Git and Github

So we got some work done on our machine and made some
commits. We are now ready to push these commits to Github.
“Pushing” means essentially uploading these changes to Github.
This makes them available to your coworkers if you're pushing
to a private repository, or makes them available to the world if
you're pushing to a public repository.

Before pushing anything to Github though, we need to create
a new repository. This repository will contain the code for our
project, as well as all the changes that Git has been tracking on

3https://www.zdnet.com/article/who-writes-linux-almost-10000-
developers/

85

4. Version control with Git

our machine. So if, for example, a new team member joins, he or
she will be able to clone the repository to his or her computer and
have access to every change, every commit message and every
single bit of history of the project. If it’s a public repository,
anyone will be able to clone the repository and contribute code
to it. We are going to walk you through some examples of how
to collaborate with Git using Github in the remainder of this
chapter.

So, let’s first go back to https://github.com/ and create a new
repository:

O Search ar jump t.. Pullrequests Issues Codespaces Marketplace Explare o +.q.

Create your first praject Following Forgou e

start coding instantly ¥

with GitHub
Codespacas

Discover interesting projects and Sgin up ully coniqured]

people to populate your personal news dev emrnrime

feed.

Vour n

w1 kep L With recent activity on

ae and people you Tallow,

Explose GitHub

Latest changes

Category Forms en GitHub

Figure 4.2.: Creating a new repository from your dashboard.

86

https://github.com/

4.3. Git and Github

You will then land on this page:

Create a new repository
A repositary contains all praject files, including the revisian history. Already have a project repository elsewhere?

Impart a repositary.

Owner * Repository name *
@& rapal- [/ [housing
Great repositary name housing is available, 1orable, Need inspiral ow about urban-rotary-phone?

Description (optional)

® Q Fublic
" Anyone on the internet can see this repository. You choose who can commit.

@ 6 Private

¥ou choosa who can see and commit to this repository.
Initialize this repository with:
Skip this step if you're importing an existing repository.

[0 Add a README file

This is where you can write a long description for your project. Learn more.

Add _gitignore

Choose which files not to track from a list of templates. Learn more

.gitignore template: None -

Choose a license

A license tells others what they can and can't do with your code. Learn maore.

License: None ~

@ Yo are creating a public repositary in your persanal account

Figure 4.3.: Name your repository and choose whether it’s a pub-
lic or private repository.

Name your repository (1), and choose whether it should be open
to the world or if it should be private and only accessible to your
coworkers (2). We are going to make it a public repository, but

87

4. Version control with Git

you could make it private and follow along, this would change
nothing in what we're going to learn.

Click on Create repository (3). You then land on this page:

=] rapdall fhuusing Pubilic 2 Pin @ Unwatch (10 - ¥ rork @@

<» Code () lssues 11 Pullrequests () actions Projects [0 wiki @ Security |+ Insights @1 Settings

Quick setup — if you've done this kind of thing before
or HTTPS 55H https://github,com/rapsallshousing. git

Ger started by creating a new file o uploading an existing file. We recommend every repositary include a README, LICENSE, and .gitignore.

...0r create a new repository on the command line

echo "# housing” >> README.md

git init

oit add README.md

git commit -m "first commit"

git oranch -M main

git remote add origin https://github.com/rapdall/housing.git
git push -u origin main

...or push an existing repository from the command line

git remote add origin https://github.com/rapdall/housing. git
@it branch -M main
@it push -u erigin main

...or import code from another repository
You can initialize this repository with code from a Subversion, Mercurial, or TFS project.

Impart code

Figure 4.4.: Some instructions to get you started.

88

4.3. Git and Github

We get some instructions on how to actually get started with

our project. The first thing you need to do though is to click on
“SSH™:

Quick setup — if you've done this kind of thing before
or HTTPS E https://github.com/rap4all/housing.git L|;]

Get staﬁed by creannﬁew file or uploading an existing file. We recommend every repository include a README, LICENSE, and .gitignore.

...0r create a new repository on the command line

echo "# housing" >> README.md

git init

git add README.md

git commit -m "first commit"

git branch -M main

git remote add origin https://github.com/rap4all/housing.git

Figure 4.5.: Make sure to select ‘SSH’.

This will change the links in the instructions from https to
ssh. [will explain why this is important in a couple of para-
graphs. For now, let’s read the instructions. Since we have
already started working, we need to follow the instructions ti-
tled “..or push an existing repository from the command line”.
Let’s review these commands. This is what Github suggests we
run:

git remote add origin

- git@github.com:rap4all/housing.git
git branch -M main

git push -u origin main

What’s really important is the first command and last command.
The first command adds a remote (referred to as origin) that
points to our repository. If you're following along, you should
copy the link from your repository here. It would look exactly
the same, but the user name rap4all would be replaced by your
Github username. So now, every time I push, my changes will

89

4. Version control with Git

get uploaded to Github. The second line renames the branch
from “master” to “main”. You are of course free to do so. 1
don’t like changing the defaults from Git, so I will keep using
the name “master”. The last command pushes our changes to the
“main” branch (but we need to change “main” to “master”).

Let’s do just that:

owner@localhost $ git remote add origin
- git@github.com:rap4all/housing.git

This produces no output. We're now ready to push:
owner@localhost $ git push -u origin master
and it fails:

ERROR: Permission to rap4all/housing.git denied
~ to b-rodrigues.
fatal: Could not read from remote repository.

Please make sure you have the correct access
- rights
and the repository exists.

The reason is quite simple: Github has absolutely no idea who
we are! Remember, if the repository is public, anyone can clone
it. But that doesn’t mean that anyone can simply push code
to the repo! This means that we need a way to tell Github
that we are the owner of the repository. For this, we need a
way to log in securely, and we will do so using a public/private
RSA encryption key pair. The idea is quite simple; we are going
to generate two files on our computer. These two files form a

90

4.3. Git and Github

public/private key pair. We are going to upload the public key to
Github; and every time we want to interact with Github, Github
will check the public key against the private key that we keep
on our machine (never, ever, send the private key to anyone). If
they match, Github knows that we are who we claim to be and
will let us push to the repository. This is why we switched from
https to ssh before. https would allow us to log in by typing
a password each time we push (but actually, not anymore, since
password login was turned off some years ago). It is much easier
to not have to log in manually and let our key pair do the job
for us.

Let’s generate a public/private RSA key pair. Open a termi-
nal on Linux or macOS, or Git Bash on Windows and run the
following command:

owner@localhost $ ssh-keygen
The following lines will appear in your terminal:

Generating public/private rsa key pair.
Enter file in which to save the key
< (/home/user/.ssh/id_rsa):

Simply leave this empty and press enter. This next message now
appears:

Enter passphrase (empty for no passphrase):

Leave it empty as well. Entering a passphrase is not really
needed, since the ssh key pair itself will deal with the login. In
some situations, a passphrase might be useful if you're worried
that someone might get physical access to your machine and

91

4. Version control with Git

push code by impersonating you. But if you work with such
sensitive data and code that this is a real worry, maybe don’t
use Github?

So once you pressed enter, you get asked to confirm the
passphrase:

Enter same passphrase again:

Here again, simply leave it empty and press enter on your key-
board. Once this is done, you should see this:

Your identification has been saved in
< /home/user/.ssh/id_rsa
Your public key has been saved in
- /home/user/.ssh/id_rsa.pub
The key fingerprint is:
SHA256 : tPZnR7qdNO6mV53Mc36F3mASIyD55ktQJFBAVqJXNQw
«~ owner@localhost
The key's randomart image is:
+---[RSA 3072] —---+
| Dk=Fk=, |
| 0 0.00.. . |
| 0. oo |
| . ..0. . o0 |
| +S o.+.|
| .0. 0.0%]|
| . 0. + +=x|
| 0 ++x¥=|
| ..=00|
+----[SHA256] ————- +

If now you go to the specified path on the first line (so in our
case /home/user/.ssh/ you should see two files, id_rsa and

92

4.3. Git and Github

id_rsa.pub, the private and public keys respectively. We're
almost done: what you need to do now is copy the contents of
the id_rsa.pub file to Github.

Go to your profile settings:

Yo
Profile
o

Figure 4.6.: Click on your user profile’s image in the top-right
corner.

And then click on “SSH and GPG keys”:

93

4. Version control with Git

. rap4all
N " Your personal account

& Public profile
3 Account

& Appearance
* Accessubilfg‘

£ Notifications

Access
B Billing and plans

& Emails

@ Password and authentication

() Sessions

£ SSH and GPG keys o

[Organizations

[Moderation

Go to your personal profile

SSH keys °-

There are no SSH keys associated with your account.

Check out our guide to generating SSH keys or troubleshoot common SSH problems.

GPG keys ===

There are no GPG keys associated with your account.

e gerWm_

Vigilant mode

@ Flag unsigned commits as unverified
This willinclude any commit attributed to your account but not signed with your GPG or S/MIME key.
Note that this wil include your existing unsigned commits

Learn about vigilant mode.

Figure 4.7.: Go to your user settings and choose ‘SSH and GPG

and then click on “New SSH key”.
good idea to write something that makes recognizing the

keys’.

computer that generated the key easy) and paste the contents
of id_rsa.pub in the text box and click on “add SSH key™:

SSH keys / Add
Title

work_laptop
Key type %

Authentication Key +

new

Key
ssh-rsa
AAAAAB3NZaC1yc2EAAAADAQABAAABGQC33c6ChvZCUAdINDGS04TwWzZSPSMG+uhGlbt)SQGMEMGHSBSXbQhcXD/padOC
a0¢5sC)| T8GETHIZCL 1UMTVb7Yeq252VCVK2UE6UbSmapxGaHUIRHiyYGgpIZ1dnRir
AydcvTkxY63krSQ 1qKYhaN57QACQ) Y PGAqFtxHY4wSQLNJUOOU3JSxHxpLEZXReitoxmhEZNUR

pzqa90Tjts77WtCGMyvguBGanZOVJthSi1GPGDIA:&\KqugHGFSKpKijkChTZAQO\GHh1PuqudWJthéw\Zijede

xGhe5d7b+D10g4mjMKk+IXIOGVYTVIbwauM T

belsXIk2e7UdKqZ 1 DXW+WA42xFz/gIBTGkmaHSMnV53xsW/YhROgxO

02mnDGUQ81d7bj+n7GWc/15+qW60ePTfKuUVbfenRg67ulOIRIFAtM2+kaV0ZLxZkOoc= kubuntu@kubuntu

Figure 4.8.: Copy the contents of the public key here.

We can now go back to our terminal and try to push again:

94

Name this key (it’s a

4.3. Git and Github

owner@localhost $ git push -u origin master
The following message gets printed:

The authenticity of host 'github.com
- (140.82.121.3)"' can't be established.
ED25519 key fingerprint is
< SHA256:+DiY3wvvV6TuJJhbpZisF/
- zLDAOzPMSvHdkr4UvCOqU.
This key is not known by any other names
Are you sure you want to continue connecting
o (yes/no/[fingerprint])?

Type yes and then you should see the following:

Enumerating objects: 10, done.
Counting objects: 100% (10/10), done.
Delta compression using up to 4 threads
Compressing objects: 100% (9/9), done.
Writing objects: 100% (10/10), 2.77 KiB | 2.77
~ MiB/s, done.
Total 10 (delta 2), reused 0 (delta 0),
- pack-reused 0O
remote: Resolving deltas: 100% (2/2), done.
To github.com:rap4all/housing.git
* [new branchl] master -> master
Branch 'master' set up to track remote branch
- 'master' from 'origin'.

And we’re done! Our commits are now safely backed up on
Github. If we go to our repository’s main page, we should see
the following:

95

4. Version control with Git

©) rapdall/housing x4+

g4 D C [& httpsy/github.com/rap4all/housing
0 Search or jump to... / Pullrequests Issues Codespaces Marketplace Explore
& rapdall / housing - public R pin || @unwatch (1

<> Code (© Issues 17 Pullrequests (Actions [Projects [0 wiki @ Security [~ Insights

¥ master - ¥ 1branch ©0tags Go to file Add file - -

Bruno Rodrigues Revert "Removed analysis.R" [b7f8zee yesterday {4 commits
0 analysisR Revert "Removed analysis.R" yesterday
[save dataR Project start yesterday
Help people interested in this repository understand your project by adding a README. -

Figure 4.9.: Finally!

96

4.4. Getting to know Github

4.4. Getting to know Github

We have succeeded in installing Git and making it work with our
Github account. If you use another machine for development,
you will need to generate another RSA key pair on that machine
and add the public key to Github. If you use another code host-
ing platform, you can use the same RSA key pair, but will need
to add the public key to this other code hosting platform. You
can even use the same key pair as a passwordless authentication
method for ssh (for example to log into a server, but this is out-
side the scope of this book). Before continuing we are going to
take a little tour of Github.

) rap4all/housing x +

4 b C [& https/github.com/rap4all/housing
Q Search or jump to... / Pull requests Issues Codespaces Marketplace Explore
@ rap4all / housing - public R Pin || @unwatch (1

<> Code (O Issues 19 Pullrequests (& Actions [Projects [0 wiki @ Security | Insights

b e - P 1 Goss ot | nsane- (REIERRERN

Bruno Rodrigues Revert "Removed analysis.R" [b7f82ee yesterday D)4 commits

O analysisR Revert "Removed analysis.R" yesterday

[save data.R Project start yesterday

Help people interested in this repository understand your project by adding a README. | AddaReaDmE |

Figure 4.10.: You repository’s landing page.

97

4. Version control with Git

Once you're on your repository’s landing page you see the same
files and folders as in the root directory of the project on your
computer. In our case here, we see our two files. Github suggests
that we add a README file; we are going to ignore this for now.

Take a closer look at the menu at the top, below your repository’s
name:

B rap4all / housing public X Pin | @umwatch @~ ¥ k@ v | 1

<> Code (Issues 1% Pullrequests (® Actions [Projects [0 wiki @ Security |2 Insights 3 Settings

¥ master ~ # 1branch Q0tags Go to file Add file ~ - About

Figure 4.11.: Several options to choose from.

Most important for our needs is the “Issues”, “Pull requests”,
“Actions” and “Settings” tab.

In the next chapter we are going to learn about pull requests
which are essential for collaborating using Git and Github.com.
We will learn about the “Actions” tab in the second part of the
book.

So let’s start with “Settings”.

& rap4all/ housing pubiic R pin | ®unwatch @ ~ P k@ |~
<> Code (D Issues 11 Pullrequests () Actions [Projects [0 Wiki @ Security |~ Insights
| & General General
Access Repository name
A Collaborators housing Rename
) Moderation options v

@ Template repository

Template repositories et users generate new repositories with the same directory structure and files. Learn
Code and automation

@ Require contributors to sign off on web-based commits

¥ Branches Enabling this seting will require contributors to sign off on commits made through GitHubis web interface.

© Tags

® Actions v

therep 3 Developer Cert

& . .
& webhooks Social Preview

Figure 4.12.: Choose the ‘Settings’ tab.

98

4.4. Getting to know Github

There are many options that you can choose from, but what’s
important for our purposes is the “Collaborators” option. This
is where you can invite people to contribute to the repository.
People that are invited in this way can directly push to the
repository. Let’s invite the author of this book:

< Code @ lssues I Pullrequests () Actions [Projects [0 Wiki @ Security o Insights @3 Settings

& General Who has access

Access PUBLIC REPDSITORY ® DIRECT ACCESS A
| A coltaborators This repository is public and visible 0 collaborators have access to this

@) Moderation options - to anyone, repositary. Only you can contribute

Manage to this repository.

Code and aucomation

P Branches

© Tags Manage access

© Actions v

& Webhooks

B3 Environments @ﬁ

5§60
S Codespaces
B3 Pages You haven't invited any collaborators yet

Security
@ Code security and analysis

Figure 4.13.: Follow along to add a collaborator.

Start by typing the person’s Github username. You can also
invite collaborators by providing their email addresses.

=

Add a collaborator to housing

[Q b-rodrigues o

(S

Figure 4.14.: Look for your collaborators.

99

4. Version control with Git

Then click on the user’s profile and he or she should get an
invitation by email.

This is what it looks like from the perspective of Bruno’s account
now:

O Search or jump to... / Pulls Issues Codespaces

You now have push access to the rap4all/housing repository.

& rap4all / housing - public ® Unwatc

Figure 4.15.: Bruno can now push as if he owned the repository.

It’s important to understand the distinction between inviting
someone to contribute to the repository and have someone from
outside the project contribute. We are going to explore these
two scenarios in the next section, but before that, let’s see what
the “Issues” tab is about.

If the repository is public, anyone can open an issue to either
submit a bug, or suggest some ideas, and if the repository is
private, only invited collaborators can do this.

100

4.4. Getting to know Github

Let’s open an issue to illustrate how this works:

& rap4all / housing pubiic X pin | Quwatch @ - | 7 ok @ ~ o osar @~

O Code () Issues [Pullrequests () Actions [Projects [0 wiki (&) Security |22 Insights 3 Settings

Label issues and pull requests for new contributors Dismiss

Now, GitHub will help potential first-time contributors discover issues labeled with | good first issue

Fkrs - Qe sopen Olabes® | Miesiones @ -:

Figure 4.16.: Click on ‘New issue’ in the ‘Issues’ tab of your
project.

You will land on this interface:

e [fritle] Assignees]

55100 yourse!

Write Preview H B I 2 < & 212 2@ 2 &
Labels e
Leave a camment Nane yet
Prajects. e
Naone yet
Milestone e
No milestone
Atach files by dragging & dropping, selecting or pasting them.]

Development

issue,
(®) Rememier, contributians t this repository should fallow our GitHub Community Guidelnes.
Helpful resources

GitHub Community Guidelines

Figure 4.17.: Write what the issue’s about here.

101

4. Version control with Git

Give a nice title to the issue (1), add a thorough description
(2), (optionally) assign it to someone (3) and (optionally) add a
label to it (4), finally click on “Submit new issue” (5) to submit
the issue:

3 rapdall/ housing - pubiic Qpn | Ouwach@ - || ¥ o - || T s @ -

<> Code (O Issues I Pullrequests (O Actions [Projecs [0 Wiki D Security |~ Insights €3 Settings
Q‘ Readme missing o Assignees]
& brodrigues
Write Preview HB I =& EiEEEE A
Labels]
Need to add a readme o
documentation

Projects 5]
None yet

Milestone]

No milestane

Attach files by dragging & dropping, selecting ar pasting them., i]

Development

issue
(@) remember, contributions to this repasitory should follow our GitHub Community Guidelines,

Helpful resources

GitHub Community Guidelines

Figure 4.18.: Try to provide as many details as possible.

Sometimes issues don’t need to be very long, and act more as
reminders than anything else. For example here, the owner
of the repository didn’t have the time to add a Readme, but
didn’t want to forget to add one later on. The author assigned
the issue to Bruno: so it’ll be Bruno’s job to add the Readme.
Issue-driven project management is a very valid strategy when
working asynchronously and in a decentralized fashion.

If you encountered a bug and want to open an issue, it is very
important that you provide a minimal, reproducible example
(MRE). MREs are snippets of code that can be run very easily by
someone other than yourself and which produce the bug reliably.
Interestingly, if you understand what makes an MRE minimal

102

4.4. Getting to know Github

and reproducible, you understand what will make our pipelines
reproducible as well. So what’s important for an MRE?

First, the code needs to be self-contained. For example, if some
data is required you need to provide the data. If the data is
sensitive, you need to think about the bug in greater detail: is
the bug due to the structure of the data, or does the bug manifest
itself on any kind of data? If that’s the case, use some of the
built-in datasets to R (iris, mtcars, etc) for your MRE.

Does your MRE require extra packages to run? Then make this
as clear as possible, and not only provide the package names,
but also their versions (it is a good idea to copy and paste the
output of sessionInfo() at the end of the issue).

Finally, does your example depend on some object defined in
the global state? If yes, you also need to provide the code to
create this object.

The bar you need to set for an MRE is as follows: bar needed
package dependencies that may need to be installed beforehand,
people that try to help you should be able to run your script by
simply copy-and-pasting it into an R console. Any other manip-
ulation that you require from them is unacceptable: remember
that in open source development, developers very often work
during their free time, and don’t owe you tech support! And
even if they did, it is always a good idea to make it as easy as
possible for them to help you, because it simply increases the
likelihood that they will actually help.

Also, writing an MRE can usually make you actually debug the
code yourself. Just like in rubber duck debugging?*, the fact of
simply trying to explain the problem can lead to finding what’s

4https://en.wikipedia.org/wiki/Rubber_duck_ debugging

103

https://en.wikipedia.org/wiki/Rubber_duck_debugging

4. Version control with Git

wrong. But by writing an MRE, you're also reducing the prob-
lem into its most basic parts, and removing everything unneces-
sary. By doing so, you might realize that what you thought was
a bug of the library was maybe rather a problem between the
keyboard and the chair.

So don’t underestimate the usefulness of creating high-quality
MREs for your issues! One package that can assist you with
this is {reprex} (read about it here?).

4.5. Conclusion

You should now have your first repository and know the very
basics of using Git and Github.com. If you did not understand
everything, take some time to rerun the commands from above.
Maybe add some more files to your repo, remove them, try to
revert certain commits, etc. Create a new repo and try to push
some files or scripts to it. Really take the time to understand
what is going on and how to use these tools, because they are
essential for reproducibility.

Shttps://reprex.tidyverse.org/

104

https://reprex.tidyverse.org/

5. Collaborating using
Trunk-based
development

As already mentioned several times, there are two ways of col-
laborating with Git (and Github): either as a team, or as an
external dev (external, as in, not part of the development team
of a given project). External contributors can only contribute
code to public repositories, and the project owners can either
accept or refuse the patches.

We are going to learn about these two ways of collaborating.
Let’s first focus on collaboration within a team.

5.1. Collaborating as a team

5.1.1. TBD basics

Remember the issue we opened and assigned to Bruno? Bruno
will now take care of this issue by adding a Readme file. This will
also be the opportunity to introduce trunk-based development.
The idea of trunk-based development is simple; team members
should work on separate branches to add features or fix bugs,
and then merge their branch to the “trunk” (in our case the

105

5. Collaborating using Trunk-based development

master branch) to add their changes back to the main codebase.
And this process should happen quickly, ideally every day, or as
soon as some code is ready. When a lot of work accumulates
in a branch for several days or weeks, merging it back to the
master branch can be very painful. So by working in short-lived
branches, if conflicts arise, they can be dealt with quickly. This
also makes code review much easier, because the reviewer only
needs to review little bits of code at a time. If instead long-lived
branches with a lot of code changes get merged, reviewing all
the changes and solving the conflicts that could arise would be a
lot of work. To avoid this, it is best to merge every day or each
time a piece of code is added, and, very importantly, this code
does not break the whole project (we will be using unit tests for
this later).

So in summary: to avoid a lot of pain by merging branches that
moved away too much from the trunk, we will create branches,
add our code, and merge them to the trunk as soon as possible.
As soon as possible can mean several things, but usually this
means as soon as a feature was added, a bug was fized, or as soon
as we added some code that does not break the whole project, even
if the feature we wanted to add is not done yet. The philosophy
is that if merging fails, it should fail as early as possible. Early
failures are easy to deal with.

Our aim should be to provide a functioning project to anyone
cloning the master branch anytime (but still offer a simple way
to install a point release of the project).

So, back to our issue. First, Bruno needs to clone the reposi-
tory:

bruno@computer $ git clone
- git@github.com:rap4all/housing.git

106

5.1. Collaborating as a team

To add the feature, Bruno will now create a new branch by using
the git checkout command with the -b flag:

bruno@computer $ git checkout -b "add_readme"
The project automatically switches to the new branch:
Switched to a new branch 'add readme'
We can also run git status to double-check:

bruno@computer $ git status

On branch add_readme
nothing to commit, working tree clean

Bruno adds a file called README.md and adds the following text
to it:

Housing data for Luxembourg

These scripts for the R programming language
download nominal

housing prices from the *(Observatoire de 1'Habitat*
and

tidy them up into a flat data frame.

- save_data.R: downloads, cleans, and creates data
frames from the data

- analysis.R: creates plots of the data

Let’s save this and run git status to see what happened:

107

5. Collaborating using Trunk-based development

bruno@computer $ git status
Git tells Bruno that the README.md file is not being tracked:

On branch add readme
Untracked files:

(use "git add <file>..." to include in what
o will be committed)
README.md

nothing added to commit but untracked files
- present (use "git add" to track)

So next Bruno is going to track it and push the changes. Also,
Bruno is going to use a neat trick when pushing: because Bruno
is working on fixing an issue, it would be great if he could close
it as he pushes the fix. This is possible by referencing the issue
number in the commit message:

bruno@computer $ git add .
bruno@computer $ git commit -m "fixed #1"

#1 refers to the number of the issue (it’s the first issue that
was opened in the repository). So by referencing this issue with
its number in the commit message and pushing, the issue gets
automatically closed when Bruno pushes:

bruno@computer $ git push origin add_readme

As you can see from the command above, Bruno pushes to
“add_readme”, the branch he opened to solve the issue, not
“master”. If he tried to push to “master” a message saying that

108

5.1. Collaborating as a team

“master” is up-to-date would get printed. Let’s see the output
of pushing to “add_readme”:

Enumerating objects: 4, done.

Counting objects: 100% (4/4), done.

Delta compression using up to 12 threads
Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 501 bytes | 501.00
«~ KiB/s, done.

Total 3 (delta 0), reused O (delta 0),
- pack-reused O

remote:

remote: Create a pull request for 'add_readme'
- on GitHub by visiting:

remote: https://github.com/rap4all/housing/
- pull/new/add_readme

remote:

To github.com:rap4all/housing.git
* [new branch] add_readme -> add_readme

Git tells us that Bruno now needs to create a pull request. What
is that? Well, if we want to merge our branch back into the
trunk, we need to do so by using a pull request. Let’s see what
Bruno sees on Github:

109

5. Collaborating using Trunk-based development

O Search or jump to... / Pulls Issues Codespaces Marketplace Explore &+ &-
& rap4all / housing pubiic Oumwatch 2~ || ¥ Fork @ v Y star @ |~

<> Code (© Issues @ 11 Pullrequests @ Actions [Projects [0 wiki @ Security |~ Insights

About

$° add_readme had recent pushes less than a minute _

ago No description, website, or topics
provided.

1 maser - cowotie | asorie- (EIERHRRD <« osor
® 2watching

Bruno Rodrigues Revert "Removed analysis.R" 1 Sdaysago D4 % Oforks

O analysisR Revert "Removed analysis.R" 5 days ago
Releases

[save_dataR Project start 5 days ago

Noreleases published
Create a new release

Help people interested in this repository understand your project by -
adding a README.

Packages

No packages published
Publish your first package

Languages

® R100.0%

Figure 5.1.: Bruno sees that the ‘add_readme’ branch has been
recently updated.

Bruno can now decide to continue working on this branch, or,
since the purpose of this branch was only to add the Readme
file, decide instead to do a pull request.

By clicking on the “Compare & pull request” button Bruno now
sees this:

110

5.1. Collaborating as a team

Open a pull request

Create a new pull request by comparing changes across two branches. If you need to, you can also compare across forks.

Ul | base:master = € | compare: add resdme = | .~ Able to merge. Ihese branches can be auromatically merged.
e fived #1 Reviewers]
Ha reeves
Write Freview
" Assignees &
HB Iz =2 E@F &«
Ma ane—assign yoursell
2.3 comment
Labels &
Nane yrt
Projects, B
Hane yee
Milestons]
Attacn files by dragging & dropping, selecting or pasting them - -
[ro— @
(@ Bemsmber antributians o his repar sory sheuld fllew our Gitdub Commimity Guidelines, Use Clesing keywards inthe descriation ta
auramancally close ssues
Helphul resources
Gitub Camerurity Guidelines
-1 commit [® 1 file changed A1 contributor
< Commits en Feb 11, 2023
fixed #1 @ obrears ¢y ATe

Bruno Rodrigues commited § hours ago

[Eishowing 1 changed file with 7 additions and 0 deletions. Spit Unified

v 7 mmmmm README nd () <0

B 0,0 41,7 80

+ % Wousing data for Luxewbourg

+ These seripts for the A pregranning language downiload noninal hausing prices
« from the *Observataire de l'Habitat® and ctidy them up inte a flat data frame
+

| - save_dals.®: dewnloads, clesns, snd crestes dsts (rames from the dats

+ - analysis.R: creates plats of the data

wew oW

Figure 5.2.: This screen makes it easy to see what changed.

Bruno can leave a comment, and see what changed (in this case,
a single file was added) and most importantly, add a reviewer if
needed:

111

5. Collaborating using Trunk-based development

+ Able to merge. These branches can be automatically merged.

I Reviewers 3 |

Request up to 15 reviewers

[ITYDE or choose a user]

& rapsall
Labels @

None yet

®
aQ
2

Figure 5.3.: Let boss decide if this is good enough.

This is what Bruno sees now:

fixed #1 #2 et | < coser
- brodrigues wants to merge 1 commitinto master from add_readme ()
@ Conversation @ | o Commits @ B Checks @ Files changed @ +7-0mmmmm
@ b-rodrigues commented now Collborator) @ AT =+ g @
raptall .
No description provided. Q e
il n progeess? Convert to draft
o fueds cbreare
Assignees @
® @ brodrigues requested a review from rapdall now No one—assign yourself
. Labels &
Add more commits by pushing to the add_readne branch on rapdallfhousing.
Noneyet

B === —
Projects @

Review has been requested on this pull request. Itis not required to merge.

Learn more. None yet
& 1pending reviewer V| Milestone el
No milestone

. This branch has no conflicts with the base branch
Merging can be performed automaticall. ©

Development

Successfully merging this pull request may

None yet

Figure 5.4.: Github tells us that this branch can safely be
merged.

Bruno requested the review, but Github tells us that the branch
can safely be merged. This is because we added a file and did not
touch anything else, and no one else worked on the project while
Bruno was working. So there are no risks of conflicts arising.

112

5.1. Collaborating as a team

Let’s see what the owner now sees. The project owner should

have gotten a notification to review the pull request:

to... /| Pulls Issues Codespaces Marketplace Explore/ L? + - q.

- Al Unread = Filter notifications Group by: Date ~
O selectall /
o @ Y rapdall/housing 2

+ review requested 3 minutes ago
fixed #1 q e <

@

Q ProTip! When viewing a notification, press | shift u to mark it as Unread. 1-10f1 Prev Next

Figure 5.5.: The owner was notified to review the pull request.

By clicking on the notification, the owner gets taken to this

view:

113

5. Collaborating using Trunk-based development

fixed #1 #2 &

- b-rodrigues wants to merge 1 commit into master from add_readme L]

) Conversation (0 -o- Commits {1 [l Checks (0 Files changed (1

@ b-rodrigues commented 4 minutes ago Collaborator =~ (=) +=+ Reviewers
g rapdall

Still in progress? Convert to

Ma description provided.

O Fiwed #1 chfel3ie
Assignees
& @ b-rodrigues requested a review from rapdall 4 minutes ago No one—assign yourself
. . Labels
Add more commits by pushing to the add_readme branch on rap4allfhousing.
None yet

. < . Review requested Show all reviewers)
Projects

Review has been requested an this pull request. It is not required to merge,

Learn more. None yet
A 1 pending reviewer v Milestone
. . . Ne milestone
¢ Require approval from specific reviewers
before merging Add rule x Develonment
Branch protection rules ensure specific people P
approve pull requests before they're merged. Successfully merging this pu

close these issues.

@ Continuous integration has not been set up Nene yet

GitHub Actions and several other apps can be used to automatically catch

bugs and enforce style. Notifications

& Unsubs

You're receiving notification
watching this repository.

_ or view command line instructions. 1 participant

)

. This branch has no conflicts with the base branch

Merging can be performed automatically.

Figure 5.6.: Time to review the pull request.

Here, the reviewer can check the commit, the files that were
changed, and see if there are any conflicts between this code
and the code base on the master (or trunk) branch. Github also
tells us two interesting things: the owner can add a rule that

114

5.1. Collaborating as a team

states that any pull request must be approved, and also that
continuous integration has not been set up (we are going to see
what this means in the second part of this book).

Let’s go ahead and add a rule forcing each pull request to be
approved. By clicking on “Add rule”, the following screen ap-
pears:

Branch name pattern *

master

Protect matching branches

@ Require a pull request before merging
When enabled, all commits must be made to a non-protected branch and submitted via a pull
request before they can be merged into a branch that matches this rule.

@ Require status checks to pass before merging
Choose which status checks must pass before branches can be merged into a branch that
matches this rule. When enabled, commits must first be pushed to another branch, then merged
or pushed directly to a branch that matches this rule after status checks have passed.

@ Require conversation resolution before merging
When enabled, all conversations on code must be resolved before a pull request can be merged
into a branch that matches this rule. Learn more.

@ Require signed commits
Commits pushed to matching branches must have verified signatures.

@ Require linear history
Prevent merge commits from being pushed to matching branches.

@ Require deployments to succeed before merging
Choose which environments must be successfully deployed to before branches can be merged

inta a hranch that marchac thic rila

Figure 5.7.: Choose how to protect the master branch.

By clicking the first option, more sub-options appear:

115

5. Collaborating using Trunk-based development

Branch name pattern *

master

Protect matching branches

Require a pull request before merging
When enabled, all commits must be made to a non-protected branch and submitted via a pull
request before they can be merged into a branch that matches this rule.
Require approvals

When enabled, pull requests targeting a matching branch require a number of approvals and
no changes requested before they can be merged.

Required number of approvals before merging: 1 +
@ Dismiss stale pull request approvals when new commits are pushed

New reviewable commits pushed to a matching branch will dismiss pull request review

approvals.

(@ Require review from Code Owners
Require an approved review in pull requests including files with a designated code owner.

@ Require approval of the most recent reviewable push
Whether the most recent reviewable push must be approved by someone other than the
person who pushed it.

Figure 5.8.: Reviews are now required.

By choosing these options, the owner can basically enforce trunk-
based development (well, collaborators still have to submit pull
requests frequently enough though, because if they don’t, we
can be in a situation where merging can be very difficult).

Let’s choose one last option: by scrolling down, it’s possible to
select the option “Do not allow bypassing the above settings”.
This makes sure that even administrations (the owners of the
project) must abide by the same rules.

Let’s go back to the pull request. We can see now that a review
is required:

116

5.1. Collaborating as a team

fixed #1 #2
b-rodrigues wants to merge 1 commitinto master from add readme [_lT-‘

e b-rodrigues commented 26 minutes ago Collaborater) =++

No description provided.

o fixed #1 cbfcare
[0} @h-mdrigues requested a review from rapdall 26 minutes ago

Add more commits by pushing to the add_readme branch on rap4all/housing.

. . Review required Show all reviewers

At least 1 approving review is required by reviewers with write access.
Learn mare.

A 1pending reviewer v

. Merging is blocked

Merging can be performed automatically with 1 approving review,

Merge pull request ~ | orview command line instructions.

Q Write Preview

HB 7 =< & == a
Nice

-
Attach files by dragging & dropping, selecting or pasting them [1++]

{3 Close with comment -

Figure 5.9.: Time to review.

So now the owner actually has to go and see the files that were
changed:

117

5. Collaborating using Trunk-based development

b-rodrigues requested your review on this pull request.

fixed #1 #2 Edit | <> Code~

- b-rodrigues wants to merge 1 commit into master from add_readne (G)

QY Conversation (@ -o- Commits @ B} Checks @ Files changed @ +7-0 mmmEm
e b-rodrigues commented 27 minutes ago Collaborator @ «++ Reviewers @
] .

No description provided., ’ mplal

Atleast 1 approving review s required to merge
this pullrequest
o fixed #1 cbfc3re pulrea

Stillin progress? Convert to draft
® @ brrodrigues requested a review from rapdall 27 minutes ago
Assignees. fo]

No one—assign yourself
Add more commits by pushing to the add_readme branch on rapdall/housing

. Labels]
i i Show all reviewers
. Review required : None yet

Atleast 1 approving review is required by reviewers with write access.
Learn more.

Figure 5.10.: Check the code and add comments if needed.

It’s possible to add comments to single lines if needed:

TIXeQ #1 #Z2 Edit]| <2 Code~
@ Conversation @ o Commits @ [Checks @ [Files changed @ +7-0 mmmum
Changes from all commits = File filter = Conversations = Jumpto~ &3+ o/ flesvewed (R
v 7 EEEEE README.nd (C) > D @vewed -

B o 004,700
1 ata for Luxenbourg

cripts for the R programming language download nominal housing prices
e “Observatoire de l'Mabitat® and tidy them up into a flat data frame

6 + - save_data.R: downloads, cleans, and creates data frames from the data
7 + - analysis.R: creates plots of the data

Figure 5.11.: It’s possible to add comments to lines.

By clicking on the plus sign, a box appears and it’s possible to
leave a comment. In this case, everything is fine, so the owner
is going to click on the “Viewed” button:

118

5.1. Collaborating as a team

Files changed (1 +7 -0 EEEEE

o N @ viewed

download nominal housing prices
r them up into a flat data frame.

Figure 5.12.: Good job!

Then, by clicking on “Review changes”, it’s possible to either
add a general comment, approve the pull request, or request
changes that must be addressed before merging. Let’s go ahead
and approve:

ter~ Conversations+ Jumpto~ 3+ 1/1 files viewed _
L]

Finish your review X

Write Preview

HB I =@ =ZiEE0¢ 4«

Thank51

Attach files by dragging & dropping, selecting or pasting them. co

© Comment
Submit general feedback without explicit approval

@ Approve
Submit feedback and approve merging these changes.

@ Request changes
Submit feedback that must be addressed before merging

) «—

Figure 5.13.: Nothing to complain about.

By submitting the review, the reviewer is taken back to the
issue:

119

5. Collaborating using Trunk-based development

fixed #1 #2

- b-rodrigues wants to merge 1 commitinto master from add_readme (5]

L) Conversation (1 -o- Commits (1 E) Checks (@ Files changed {1

@ b-rodrigues commented 37 minutes ago Collaborator (@ -+

No description provided.

- fixed #1 cbfe37e

(O] eb-mdrigues requested a review from rap4all 37 minutes ago

Q; . rapdall approved these changes now View changes

rapdall left a comment owner | (@) +--

Thanks!

Add more commits by pushing to the add_readme branch on rap4all/housing

. . Changes approved Show all reviewers

1 approving review by reviewers with write access. Learn more.

v 1approval

@ Continuous integration has not been set up
GitHub Actions and several other apps can be used to automatically catch
bugs and enforce style.

. This branch has no conflicts with the base branch

Merging can be performed automatically.

Figure 5.14.: We're done, we can merge the pull request.

The reviewer can now merge the pull request by clicking on the
“Merge pull request” button. Github even suggests we delete
the branch, which has served its purpose:

120

5.1. Collaborating as a team

Q . rapdall approved these changes 2 minutes ago View changes

rapdall left a comment Owner | (2 «+-
Thanks! "
n
. Q rapdall merged commit c774ebf into master now Revert o
S
©
< M
Pull request successfully merged and closed Delete branch
You're all set—the add_readme branch can be / N
safely deleted.
e Write Preview
HB I iz & =i 2008 4 2

Nice ‘

Figure 5.15.: Let’s get rid of this branch.

Let’s delete it (it’s always possible to restore it).

5.1.2. Handling conflicts

As mentioned in the previous chapter, Git makes it easy to han-
dle conflicts. Well, let’s be clear; even with Git, it can some-
times be very tricky to resolve conflicts. But you should know
that when solving a conflict with Git is difficult, this usually
means that it would be impossible to do any other way, and
would inevitably result in someone having to reconcile the files
by hand. What makes handling conflicts easier with Git though,
is that Git is able to tell you where you can find clashes on a
per-line basis. So for instance, if you change the first ten lines
of a script, and I change the next ten lines, there would be no
conflict, and Git will automatically merge both our contribu-
tions into a single file. Other tools, like Dropbox, would fail in a
situation like this, because these tools can only handle conflicts

121

5. Collaborating using Trunk-based development

on a per-file basis. The same file was changed by two different
persons? Regardless of where these changes happened, you now
have a conflict to deal with on your hands... and worse, you don’t
even know where the conflicts are in the file! You will need to
scan the two resulting copies of the file by hand. Git, in the case
where the same lines were changed, highlights them very clearly
so that you can quickly find them and deal with the problems.

We will see all of this in the coming sections.

So how do conflicts happen? Let’s imagine the following scenario.
Both Bruno and the project owner create branches, and edit the
same file. Perhaps they talked over the phone and decided to
add a feature or correct a bug. Perhaps they decided that it
wasn’t worth opening an issue on Github and assign someone to
do it. After all, they discussed this on the phone and decided
that Bruno should do it. Or was it the owner who needed to
solve the issue? No one remembers now. Either way, they both
did, and changed the same file, so a conflict will ensue.

First, Bruno needs to switch back to the master branch on his
computer:

bruno@computer $ git checkout master

Switched to branch 'master’
Your branch is behind 'origin/master' by 2
< commits, and can be fast-forwarded.
(use "git pull" to update your local branch)

Git tells us to update the code on our computer by running git
pull. We use git push to upload code to Github, and use git
pull to download code from Github. Let’s run it and see what
happens:

122

5.1. Collaborating as a team

brunoQcomputer $ git pull

Updating b7f82ee..c774ebf
Fast-forward

README.md | 7 +++++++

1 file changed, 7 insertions(+)
create mode 100644 README.md

Files on Bruno’s computer have been updated. The owner of
the project (called owner, remember?) can do the same and will
see the same. Now, Bruno creates a new branch to work on the
new feature:

bruno@computer $ git checkout -b
< add_cool feature

And the project owner also creates a new branch:

owner@localhost $ git checkout -b
~ add_sweet feature

They now edit the same file, analysis.R. Bruno added this
function:

make plot <- function(country_level data,
commune_level data,
commune) {

filtered data <- commune level data %>
filter(locality == commune)

123

5. Collaborating using Trunk-based development

data_to_plot <- bind_rows(
country_level_data,
filtered_data

)

ggplot(data_to_plot) +
geom_line(aes(y = pl_m2,
X

year,
group = locality,
colour = locality))

This way, Bruno could delete the repeating code and create plots
like this:

lux_plot <- make plot(country_level data,
commune_level data,
communes [1])

Esch sur Alzette

esch_plot <- make plot(country_level data,
commune level data,
communes [2])

and so on...

The end effect is the same, but by using this function, the code
is now shorter, and clearer. Also, if someone wants to change,
say, the theme of the plot, now this only needs to be changed in
one place and not for each commune. Now, what did the owner
change? The owner started by removing the line that loaded

124

5.1. Collaborating as a team

the {purrr} package, as no function from the package was used
in the script, and then also changed every %>% to |>. It seems
that much more than just who would make the changes got lost
in translation.. Anyways, both now push their changes to their
respective branches. This is Bruno:

bruno@computer $ git add .

bruno@computer $ git commit -m "make plot() for
-~ plotting"

bruno@computer $ git push origin
< add_cool feature

Enumerating objects: 5, done.

Counting objects: 100% (5/5), done.
Delta compression using up to 12 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 647 bytes | 647.00
~ KiB/s, done.
Total 3 (delta 1), reused 0 (delta 0),

- pack-reused 0O
remote: Resolving deltas: 100% (1/1), completed
» with 1 local object.
remote:
remote: Create a pull request for

- ‘'add_cool_feature' on GitHub by visiting:
remote:

- https://github.com/rap4all/housing/pull/

< new/add_cool feature

remote:
To github.com:rap4all/housing.git
* [new branch] add_cool_feature —>

» add_cool feature

125

5. Collaborating using Trunk-based development

and this is the owner:

owner@localhost $ git add .
owner@localhost $ git commit -m "cleanup"
owner@localhost $ git push origin

< add_sweet_feature

Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 4 threads
Compressing objects: 1007 (3/3), done.
Writing objects: 100% (3/3), 449 bytes | 449.00
- KiB/s, done.
Total 3 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), completed
- with 1 local object.
remote:
remote: Create a pull request for
- 'add_sweet_feature' on GitHub by visiting:
remote:
- https://github.com/rap4all/housing/pull/
- new/add_sweet_feature

remote:
To github.com:rap4all/housing.git
* [new branch] add_sweet_feature ->

«~ add_sweet feature

So, let’s think about what just happened: two developers
changed the same file, analysis.R, in two separate branches.
These two branches need to be merged back to the trunk.

So Bruno does a pull request:

126

5.1. Collaborating as a team

& rap4all/ housing public Ounwatch @) ~ | ¥ Fork @ | v Y sar@

<> Code (O Issues [Pullrequests (Actions [Projects [0 wiki @ Security |~ Insights

add_cool_featu... ~ o Gotofile | Addfile~ - About

No description, website, or topics

This branch is 1 commit ahead of master. 11 Contribute provided.
5 . . Readh
. This branch is 1 commit ahead of 0 Readme
Bruno Rodrigues make_plot() for plc master. ¢ Ostars
Open a pull request to contribute your ® 2watching
[READMEmd fixed #1 changes upstream
¥ Oforks
[analysisR make_plot() f
Compare
save_dataR Project start
b - i Releases

Figure 5.16.: Bruno opens a pull request after finishing his
changes.

First, Bruno selects the feature branch (1), then clicks on “Con-
tribute” (2) and then “Open pull request” (3). Bruno gets taken
to this screen:

Open a pull request

Create a new pull request by comparing changes across two branches. If you need to, you can also compare across forks.

Tl basermaster = € compare: add_cool_feature = Able to merge. fhese branches can be autematically merged.

e make_plot{) for platting

Write Preview

HB Z=ofIZ122@0 46 Assigness @

oave 2 comment No ene—assign yourself
Labels]
Hone yec
Projects &
None yet

Attach files by dragging & dropping, selecting or pasting them GO Milestone =
Development ©

15 ta this repository should follow pur Gitkub Community
Jse eywords in the description o
automarically lose Issues
o1 commit [®1file changed A1 contributor

Figure 5.17.: No conflicts, for now...

Now Bruno can click on “Create pull request”, but remember,
because reviews are required, automatic merging is disabled.

127

5. Collaborating using Trunk-based development

If now we go see what happens from the project owner’s side
of things, first of all, there’s now a notification for a pending
review:

/ Pulls Issues Codespaces Marketplace Explore /b. + - *.

All Unread = Filter notifications Group by: Date ~

O selectall /
4all/h #4
© @ 11 reptalihousing) subscribed (") 1 minute ago
make_plot() for plotting

o @ 1} rapdallihousing #3

+ subscribed 13 hours ago
cleanup @ g

@ - rapdall/housing #2

fixed #1 review requested [15 hours ago

Q ProTip! When viewing a notification, press | shift u to mark it as Unread. 130f3 Prev Next

Figure 5.18.: New review pending.

By clicking on it, the project owner can review the pull request
and decide what to do with it. So at this point, the owner did
not open a pull request for the feature he or she worked on yet.
And maybe that’s a good thing, because now the project owner
can see that the changes that Bruno made on the file will conflict
with the project owner’s changes.

So how to move forward? Simple: the project owner can decide
to approve the pull request, which will merge Bruno’s changes
into the master branch (or the trunk). Then, instead of opening
a pull request for merging his or her changes into trunk, which
will cause a conflict, the project owner can instead merge the
changes from the trunk into his or her feature branch. This will
also create a conflict, but now the project owner can easily deal
with it on his or her machine, and then push a new commit with
both changes integrated gracefully. The image below illustrates
this workflow:

128

5.1. Collaborating as a team

add_sweet_feature (Owner's feature branch)

Owner opens pull
request and
merges changes
to trunk

Owner creates
feature branch

Owner merges changes from
trunk to feature branch

Master (or Trunk)

Bruno opens pull request,
which gets reviewed and
merged back to the trunk

Bruno creates
Feature branch

add_cool_feature (Bruno's feature branch)

Figure 5.19.: Conflict solving with trunk-based development.

First step, the owner reviews and approves Bruno’s pull re-
quest:

make_plot() for plotting #4

- b-rodrigues wants to merge 1 commitinto master from add_cool_feature (0

Q) Conversation (0 -o- Commits {1 [} Checks (@ Files changed (1)
@ b-rodrigues commented 27 minutes ago Collaborator =~ @ +++
No description provided.
o make_plot() for plotting bseasda

@- ‘ rap4all approved these changes now View changes

Add more commits by pushing to the add_cool_feature branch on rap4all/housing.

. . Changes approved Show all reviewers

1 approving review by reviewers with write access. Learn more.

+ 1approval v

@ Continuous integration has not been set up
GitHub Actions and several other apps can be used to automatically catch bugs and enforce style.

This branch has no conflicts with the base branch
Merging can be performed automatically.

Figure 5.20.: First, let’s approve the changes.

The pull request can get merged and Bruno’s feature branch
deleted. Now, it wouldn’t make sense for the project owner to

129

5. Collaborating using Trunk-based development

create a pull request to merge his or her changes. They would
conflict with what Bruno did. So the project owner goes back
to his or her computer and essentially updates the code in his
or her feature branch by merging master into it.

So, the project owner checks that he or she is working on the
feature branch:

owner@localhost $ git status

On branch add_sweet_feature
nothing to commit, working tree clean

Ok, so now let’s get the updated code from master, by pulling
from master:

owner@localhost $ git pull origin master
The owner now sees this:

remote: Enumerating objects: 6, done.
remote: Counting objects: 100% (6/6), done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 4 (delta 1), reused 3 (delta 1),
< pack-reused 0
Unpacking objects: 100} (4/4), 1.23 KiB | 418.00
- KiB/s, done.
From github.com:rap4all/housing
* branch master -> FETCH_HEAD
c774ebf..a43c68f master -> origin/master
Auto-merging analysis.R
CONFLICT (content): Merge conflict in analysis.R

130

5.1. Collaborating as a team

Automatic merge failed; fix conflicts and then
-~ commit the result.

Git detects that there are some conflicts and tells the owner to
fix them, and then commit the results. So let’s open analysis.R
and see how it looks (you can view the file online on this link!.
First of all, you will see Git deals with conflicts on a per-line
basis. So each line that the owner changed that does not con-
flict with Bruno’s change gets immediately updated to reflect
the owner’s changes. For example, remember that the owner re-
moved the line that loaded the {purrr} package? This line was
also removed by pulling the changes from master into the feature
branch. Also, you should notice that every %>% was changed into
| > as well. These two changes happened without any issues.

Then, you should understand what happens when a conflict gets
detected on some lines. For example, this is the first conflict you
should see:

<<<<<<< HEAD
filtered data <- commune level data |>
filter(locality == communes[1])

filtered data <- commune level data %>%
filter(locality == commune)
>>>>>>> a43c68f5596563ffca33b3729451bffc762782c3

We see how the lines look on the owner’s computer and how
they look in the master branch (or trunk). The lines between
<<<<<<< HEAD and ======= are the lines in the owner’s
feature branch. The lines between ======= and >>>>>>>
a43c68£5596563ffca33b3729451bffc762782c3 are how they

Thttps://is.gd /kt Wtjr

131

https://gist.github.com/b-rodrigues/f713702268c99328ad16af56f7d32892

5. Collaborating using Trunk-based development

look in the master branch (or trunk). This very long chain of
characters that starts with a43c68f is the hash of the commit
from which these lines come from.

So this makes things quite easy; one simply needs to remove the
outdated code, and then commit and push the fixed file! The
project owner only needs to remove <<<<<<< HEAD and =======
and what’s between these lines, as well as the lines that show the
hash commit. The project owner can now commit and push the
changes, open a pull request, ask Bruno to review the changes

one last time and merge everything back to master.

Add sweet feature #5
- rapdall wants to merge 4 commits into master from add_sweet_feature (CJ

QY Conversation (@ o Commits (@ [l Checks @ Files changed @

* rapdall commented 1 minute ago owner @ ATip -

No description provided.

G Rapdall - rpi added 4 commits 14 hours ago

o cleanup 2a7c963
o Revert "cleanup” [38ed
o cleanup s804cC
@ Q rap4all requested a review from b-rodrigues now o

@ . b-rodrigues approved these changes now ° View changes

Add more commits by pushing to the add_sweet_feature branch on rapdall/housing

. 3 . Changes approved Show all reviewers

1 approving review by reviewers with write access. Learn more.
' 1approval v

. This branch has no conflicts with the base branch

Merging can be performed automatically.

Figure 5.21.: The conflict has been gracefully solved.

In (1) we see the commit that deals with the conflict, in (2) the

132

5.1. Collaborating as a team

owner asks Bruno for a review and then in (3) we see that Bruno
reviewed and approved. Finally, the pull request can be merged
(4) and the feature branch deleted.

5.1.3. Make sure you blame the right person

If many people contribute to a single project, it might some-
times be difficult to know who changed what and when exactly.
This is where the git blame command is useful. If you want
to know who changed the file called analysis.R for example,
simply run:

owner@localhost $ git blame analysis.R

and you will see a detailed history, line by line, with the user
name of the contributors and a date stamp:

b7£82eel (Bruno 2023-02-05 18:03:37 +0100 24)
~ #Let’s also compute it...

b7£82eel (Bruno 2023-02-05 18:03:37 +0100 25)
55804ccb (Owner 2023-02-11 22:33:20 +0000 26)
- country_level_data <- ...

55804ccb (Owner 2023-02-11 22:33:20 +0000 27)
- mutate(p0 = ifelse(y...

We can see that Bruno edited lines 24 and 25 on the 5th of
February as part of the commit with the hash b7f82eel, while
the owner of the repository changed lines 26 and 27 on the 11th
of February as part of the commit with the hash 55804ccb.

Take advantage of git blame to have a clear overview of each
file’s changes.

133

5. Collaborating using Trunk-based development
5.1.4. Simplified trunk-based development

The workflow that we showed here may seem a bit too rigid
for smaller teams (below 4 or 5 contributors). It is possible to
adopt a simplified version of trunk-based development, where
contributors don’t have to open pull requests to merge their
feature branches into the trunk, and no reviewer is needed. In
cases like this, Git forces you to pull changes if someone already
merged his or her feature branch into the trunk before you could.
This way, when pulling, conflicts (if any) arise at that point. It
is then your responsibility to solve the conflicts (and this works
just like in the previous section) and then commit and push
the commits with the conflicts resolved. Another contributor
who then wishes to merge his or her feature branch into the
trunk will have to pull again, ensuring that conflicts get resolved
before they can merge. If no conflicts arise (for example, you
both worked on different files, or on different lines of the same
files), then no resolution is needed and the feature branch can
be merged into master.

5.1.5. Conclusion

The main ideas of trunk-based development are:

o Each contributor opens a new branch to develop a feature
or fix a bug, and works alone on his or her own little
branch;

o At the end of the day at the latest (or a previously agreed
upon duration), branches need all to get merged;

o Conflicts need to be taken care of at that point;

o If adding a feature would take more time than just one
day, then the task needs to be split in a manner that

134

5.2. Contributing to public repositories

small contributions can be merged daily. In the begin-
ning, these contributions can be simple placeholders that
will be gradually enriched with functioning code until the
feature is successfully implemented. This strategy is called
branching by abstraction;

o The master branch (or trunk) always contains working,
production-grade, code;

« To enforce discipline, it might be worth it to make opening
pull requests mandatory for merging back to the trunk,
and require a review.

5.2. Contributing to public repositories

In this last section, we are going to briefly discuss how to con-
tribute to a project when we are not a team member of that
project. For example, maybe we use an R package and notice a
bug, and want to propose a fix. Or maybe we simply spotted a
typo in the README of said package, and want to propose a
correction. Whatever it may be, if the repository is public, any-
one can propose a fix. For example, consider this repository:

Q) secrorumpuo Pulrequests Tssues Codespaces Marketplace Explore Ly

my_cool_project Releases

[Tl avery cool project

Packages

Figure 5.22.: A public repository.

135

5. Collaborating using Trunk-based development

This repository contains code written by a fellow called “rap4all”,
and Bruno uses this code daily. However, Bruno notices a typo
in the readme, and wants to propose a fix.

First, Bruno visits the repository on Github (since it’s a public
repository, anyone can view it online) and creates a fork:

Q Search or jump to... I Pullrequests Issues Codespaces Marketplace Explore L+ @
B rap4all / my_cool_project pusiic Owate| @ - [W Rk - W@ -
© Code @ Issues 13 Pullrequests @ Acions [Projects @ Security L Insights
P man - | ¥ 1 Qougs wootte aarie- (SRR Avou
No description, website, or topics provided.
& rapall Create ReroNE M Ticasob Zminutesago D1 commic

[Readme
O READMEmA Create README md 2minutesago fr Ostars

Figure 5.23.: Bruno needs to create a fork of the repository.

Forking creates a copy of the repository in Bruno’s account:

Create a new fork

A fork is a copy of a repository. Forking a repository allows you to freely experiment with changes without
affecting the original project.

Owner * Repository name *
@ b-rodrigues~ | / my_cool_project v

By default, forks are named the same as their upstream repository. You can customize the name to distinguish it
further.

Description (optional)

Copy the main branch only

Contribute back to rapdall/my_cool_project by adding your own branch. Learn more.

(@ You are creating a fork in your personal account.

Figure 5.24.: Bruno goes ahead with forking.

136

5.2. Contributing to public repositories

Bruno now sees the fork on his account as well:

C) Search or jump to. /| Pullrequests Issues Codespaces Marketplace Explore L

% b-rodriques / my_cool_project Fubic RPn OwWch @ - ¥ k@ - W

<> Code 11 Pullrequests @ Actions [Projects [wiki @ Security | Insights @ Settings

¥ main - P 1branch ©O0tags Goto file Add file ~ - About

No description, website, or to]

T branch s p o date ithrapdallny.cool projectmain, 1 Comrbuse « G ync ok =
M Readme
17 Ostars
& v e rerouEng Ticasth Sminutesago D1comME | & owaiching
w tron
[README.md Create README.md 5 minutes ago
README.md v Releases
my_cool_project
Tis is a very cool project Packages

No packages publishet
Puolish

Figure 5.25.: Bruno’s fork.

So now, Bruno can clone this repository and work on it, because
he is working on a copy of the repository that he owns. Anything
Bruno does on this copy will not affect the original repository:

bruno@computer $ git clone
- git@github.com:b-rodrigues/my_cool project.git

o

Bruno now fixes the typo in the README.md file, commits and
pushes to his fork:

137

5. Collaborating using Trunk-based development

% b-rodrigues/ my_cool_project fublic R Owach @ - | ¥ k@ - 7

forked from rapallimy cool project

<> Code 11 Pullrequests @ Actions [Projects 00 wiki @ Security |2 Insights 3 Settings

main - $1banch ©0tgs Gotofile Addfile - - About

No description, website, or t
This branch is 1 commit ahead of rapdallmain. 11 Contribute + Q3 Sync fork

@ Readme

tr Ostars
Bruno Rodrigues fixed typo acesass now 2commits & 0watching
% 1fork
[README.md fixed typo now
READMEmd Y Releases

my_cool_project

[This}s a very cool project Packages

No pa
Publis

Figure 5.26.: Bruno fixed the typo in his fork.

As you can see, Bruno’s fork is now ahead of the original repo
by one commit. By clicking on “Contribute”, Bruno can open a
pull request to propose his fix to the original repository.

This pull request will be opened over at the original repository:

138

5.2. Contributing to public repositories

Open a pull request

Create a new pull request by comparing changes across two branches. If you need to, you can also compare across forks.

T base repository: rapdallf/my_cool_project * | base:main = € | head repository: b-rodrigues/my_cool_project * | compare:

 Able to merge. These branches can be automatically merged.

@ [fixed typo]

Write Preview HB T =& =200 4

Leave a comment

Attach files by dragging & drepping, selecting or pasting them. [:]

PP ——— =

(® Remember, contributions to this repository should follow our GitHub Community Guidelines

-0- 1 commit @ 1 file changed
<o Commits on Feb 12, 2023

fixed typo

Bruno Rodrigues committed 3 minutes ago

[E)showing 1 changed file with 1 addition and 1 deletion

v 2 EEEEE README.nd ()

...... 8@ -1,3 +1,3 @@

% my _cool project

3 -~ W88 is a very cool project
4 . EEES is a very cool project

Figure 5.27.: Bruno opens a pull request to contribute his fix

upstream.

What does the owner of the original repository, “rap4all”, see?
The pull request Bruno opened is now in the original repository’s
“Pull request” menu, and the owner can check what the contri-
bution is, if it breaks code or not, etc. This is essentially the
same workflow as the one presented before in trunk-based devel-
opment with pull requests and reviews before merging (minus
the forking of the repository).

139

5. Collaborating using Trunk-based development

Q Search or jump to. . Pullrequests Issues Codespaces Marketplace Explore
& rapdall/ my_cool_project i % Pin | @unwatch @ - Y o

€3 tode (D) lssues [Pullrequests @ (D Actions [Projects 0 wiki (D Secunty L Insights 810

fixed typo #1
- beradrigues wants

W conversation @ | o Commics @ EL checks @ [& Files changed @

e b-radrigues commented now First-time contributer () aes Reviewsss

itinto rapdall:main from b-rodrigues:main (G

P reviews

Seillin pragres:

o fixed typa Goavass
Assigness.
Al more commits by pushing te the sain branch on bredriguesimy_cool_project Mo one—assigt
¢ Labels
3 Require approval from specific reviewers before merging .
Branch protectian rules ensure specific people approve pul requests before Add rule ® ar et
they're menged.
Projects
@ Continuous integration has not been set up Pane yet
Githiub Actions and several other apos can be u automatically catch bugs and enfos
Milestone
. This branch has no conflicts with the base branch Mg milestane
Merging can be performed automatically
Development
Issues

Paneyet

’ Write | Preview HB8 7= SIEE@
Nerfications

i
%
i
1
i
f
E

1 participant

o
11 cmepatrenes (D ©®

Artach files by dragging & dropping, selecting ar pasting them.

Figure 5.28.: The owner of the original repository can now ac-
cept Bruno’s fix.

By merging the fix, the owner can now benefit from a grammat-
ically correct Readme file as well:

140

5.3. Further reading

& rap4all/ my_cool_project pubiic X Pin | ®unwatch @

<> Code (@ Issues 1 Pullrequests @ Actions [Projects [0 Wiki @ Security | Insights

main - § 1branch ©0tags Gotofile | Addfile~ -
@ rapdall Merge pull request #1 from b-rodrigues/main 99a5b3 now O 3 commits
[README.md fixed typo 8 minutes ago
README.md ya

my_cool_project

s a very cool project
"~
58
30

Figure 5.29.: The beauty of open source.

5.3. Further reading

To know everything about trunk-based development, check out
Hammant (2020). A free, online, version of the book is available
at https://trunkbaseddevelopment.com/.

141

https://trunkbaseddevelopment.com/

6. Functional programming

Now that we are familiar with Git and Github, we can start
with writing code. We will learn how to write code using the
functional programming paradigm. Programming paradigms
are ways to structure programs (or scripts).

This chapter will teach you the fundamentals of functional pro-
gramming. Functional programming might sound scary, but we
will focus on only a handful of concepts that are quite accessible
but still provide many benefits. Using these functional program-
ming concepts will make your code more reliable, easier to test,
document, share, and ultimately rerun.

6.1. Introduction

Remember that the philosophy of part one of this book is “don’t
repeat yourself”. In this chapter we will see how we can reduce
the amount of code as much as possible. In the previous chapter
we’ve seen how Bruno was able to get rid of many lines of code
(that were all the same) by writing a single function:

make plot <- function(country_level data,
commune_level data,
commune) {

143

6. Functional programming

filtered_data <- commune_level data %>%
filter(locality == commune)

data_to_plot <- bind rows(
country_level_data,
filtered data

)

ggplot(data_to_plot) +
geom_line(aes(y = pl_m2,
X = year,
group = locality,
colour = locality))

Now we are going to go one step further and not only learn how
to write good functions, but also how we can push the concept
of “not repeating oneself” to the extreme by using higher-order
functions and function factories.

You are very likely already familiar with at least two elements
of functional programming: functions and lists. But functional
programming is a complete programming paradigm, so using
functional programming is more than simply using functions and
lists (which you can use with other programming paradigms as
well).

Functional programming is a paradigm that relies exclusively
on the evaluation of functions to achieve the desired result. If
you have already written your own functions in the past, what
follows will not be very new. But in order to write a good func-
tional program, the functions that you write and evaluate have
to have certain properties. Before discussing these properties,

144

6.1. Introduction

let’s start with state.

6.1.1. The state of your program

Let’s suppose that you start a fresh R session, and immediately
run this line:

1s(O)

If you did not modify any of R’s configuration files that get
automatically loaded on startup, you should see the following:

character(0)
Let’s suppose that now you load some data:
data(mtcars)
and define a variable a:
a<-1
Running 1s() now shows the following:
(1] "a" "mtcars"

You have just altered the state of your program. You can think
of the state as a box that holds everything that gets defined by
the user and is accessible at any time. Let’s now define a simple
function that prints a sentence:

145

6. Functional programming

f <- function(name){
print(pasteO(name, " likes lasagna"))

}

f ("Bruno")
and here’s the output:
[1] "Bruno likes lasagna"
Let’s run 1s () again:
[1] "a" nfn "mtcars"

Function £ () is now listed there as well. This function has two
nice properties:

o For a given input, it always returns exactly the same
output. So f("Bruno") will always return “Bruno likes
lasagna”.

o When running this function, the state of the program does
not get altered in any way.

6.1.2. Predictable functions

Let’s now define another function called g(), which does not
have the same properties as £(). First, let’s define a function
which does not always return the same output given a particular
input:

146

6.1. Introduction

g <- function(name){

food <- sample(c("lasagna", "cassoulet",
-~ "feijoada"), 1)

print(pasteO(name, " likes ", food))
}

For the same input, “Bruno”, this function now produces (po-
tentially) a different output:

g("Bruno")
[1] "Bruno likes lasagna"

g ("Bruno")
[1] "Bruno likes feijoada"

And now let’s consider function h() that modifies the state of
the program:

h <- function(name){

food <- sample(c("lasagna", "cassoulet",
-~ "feijoada"), 1)

if (exists("food list")){

food_list <<- append(food_list, food)
} else {

food_list <<- append(list(), food)
}

print (pasteO(name, " likes ", food))
}

This function uses the <<- operator. This operator saves def-

147

6. Functional programming

initions that are made inside the body of functions (the body
of a function are all the instructions that go between the curly
braces) in the global environment. Before calling this function,
run 1s () again. You should see the same objects as before, plus
the new functions we’ve defined:

[1] uan nfn ugu nhn
< '"mtcars"

Let’s now run h() once:

h("Bruno")
[1] "Bruno likes feijoada"

And now 1s() again:

[1] uan nfn "fOOd_liSt" ngn
< "h" "mtcars"

Running h() did two things: it printed the message, but also
created a variable called “food_list” in the global environment
with the following contents:

food list

[[1]]
[1] "feijoada"

Let’s run h() again:

148

6.1. Introduction

h("Bruno")
[1] "Bruno likes cassoulet"

and let’s check the contents of “food list”:

food list

[[1]]
[1] "feijoada"

[[2]]

[1] "cassoulet"

If you keep running h(), this list will continue growing. Let
me say that I hesitated to show you this; this is because if you
didn’t know <<-, you might find the example above useful. But
while useful, it is quite dangerous as well. Generally, we want to
avoid using functions that change the state as much as possible
because these functions are unpredictable, especially if random-
ness is involved. It is much safer to define h () like this instead:

h <- function(name, food list = list()){

food <- sample(c("lasagna", "cassoulet",
-~ "feijoada"), 1)

food_list <- append(food_list, food)
print(pasteO(name, " likes ", food))

food_list

149

6. Functional programming

The difference now is that we made food_list the second argu-
ment of the function. Also, we defined it as being optional by
writing:

food list = 1list()
This means that if we omit this argument, the empty list will get

used by default. This avoids the users from having to manually
specify it.

We can call it like this:
food_list <- h("Bruno", food_list)
since food list is

already defined, we don't
need to start with an empty list

[1] "Bruno likes feijoada"

We save the output back to food_list. Let’s now check its
contents:

food list

[[11]
[1] "feijoada"

[[2]]

[1] "cassoulet"

150

6.1. Introduction

[[3]]
[1] "feijoada"

The only thing that we now still need to deal with is the fact
that the food item gets chosen randomly. I'm going to show you
the simple way of dealing with this, but later in this chapter
we are going to use the {withr} package for situations like this.
Let’s redefine h () one last time:

h <- function(name, food list = list(), seed =
o 123){

We set the seed, making sure that we get
the same selection of food for a given seed

set.seed(seed)

food <- sample(c("lasagna", "cassoulet",
-~ "feijoada"), 1)

We now need to unset the seed, because
if we don't, guess what, the seed will
stay set for the whole session!
set.seed (NULL)

food_list <- append(food_list, food)

print (pasteO(name, " likes ", food))

food_list

151

6. Functional programming

Let’s now call h() several times with its default arguments:

h("Bruno")

[1] "Bruno likes feijoada"

[[1]]
[1] "feijoada"

h("Bruno")

[1] "Bruno likes feijoada"
[[1]1]
[1] "feijoada"

h("Bruno")

[1] "Bruno likes feijoada"

[[1]]
[1] "feijoada"

As you can see, every time this function runs, it now outputs
the same result. Users can change the seed to have this function
output, consistently, another result.

6.1.3. Referentially transparent and pure
functions

A referentially transparent function is a function that does not
use any variable that is not also one of its inputs. For example,

152

6.1. Introduction

the following function:

bad <- function(x){
X +y

}

is not referentially transparent, because y is not one of the func-
tion’s inputs. What happens if you run bad() is that bad()
needs to look for y. Because y is not one of its inputs, bad ()
then looks for it in the global environment. If y is defined there,
it then gets used. Defining and using such functions must be
avoided at all costs because these functions are unpredictable.
For example:

y <= 10

bad <- function(x){
X +y

}

bad (5)

This will return 15. But if y <- 45 then bad(5) would this
time around return 50. It is much safer, and clearer to make y
an explicit input of the function instead of having to keep track
of y’s value (and it’s so easy to do, why just not do it):

good <- function(x, y){
X +y

}

good () is a referentially transparent function; it is much safer
than bad (). good() is also a pure function, because it’s a func-

153

6. Functional programming

tion that does not interact in any way with the global environ-
ment. It does not write anything to the global environment, nor
requires anything from the global environment. Function h()
from the previous section was not pure, because it created an
object and wrote it to the global environment (the food_list
object). Turns out that pure functions are thus necessarily ref-
erentially transparent.

So the first lesson in your functional programming journey that
you have to remember is to only use pure functions.

6.2. Writing good functions

6.2.1. Functions are first-class objects

In a functional programming language, functions are first-class
objects. Contrary to what the name implies, this means that
functions, especially the ones you define yourself, are nothing
special. A function is an object like any other, and can thus
be manipulated as such. Think of anything that you can do
with any object in R, and you can do the same thing with a
function. For example, let’s consider the +() function. It takes
two numeric objects and returns their sum:

1+ 5.3

[1] 6.3

or alternatively: "+ (1, 5.3)

154

6.2. Writing good functions

You can replace the numbers with functions that return num-
bers:

sqrt(1) + log(5.3)

[1] 2.667707

It’s also possible to define a function that explicitly takes another
function as an input:

h <- function(number, f){
f (number)

b

You can call then use h() as a wrapper for £():
h(4, sqrt)

[1]1 2
h(10, logl0)

(1] 1

Because h () takes another function as an argument, h () is called
a higher-order function.

If you don’t know how many arguments f (), the function you're
wrapping, has, you can use the .. .:

h <- function(number, f, ...){
f (number, ...)

}

155

6. Functional programming

. are simply a place-holder for any potential additional argu-
ment that £ () might have:

h(c(1, 2, NA, 3), mean, na.rm = TRUE)
[1] 2
h(c(l, 2, NA, 3), mean, na.rm = FALSE)

[1] NA

na.rm is an argument of mean(). As the developer of h(), I
don’t necessarily know what £ () might be, but even if I knew
what f () would be and knew all its arguments, I might not want
to list them all. So I can use ... instead. The following is also
possible:

w <- function(...){

pasteO("First argument: ", ..1,
", second argument: ", ..2,
", last argument: ", ..3)
+
w(l, 2, 3)

[1] "First argument: 1, second argument: 2, last
argument: 3"

If you want to learn more about ..., type ?dots in an R con-
sole.

Because functions are nothing special, you can also write func-
tions that return functions. As an illustration, we’ll be writing

156

6.2. Writing good functions

a function that converts warnings to errors. This can be quite
useful if you want your functions to fail early, which often makes
debugging easier. For example, try running this:

sqrt (-5)
Warning in sqrt(-5): NaNs produced

[1] NaN

This only raises a warning and returns NaN (Not a Number).

This can be quite dangerous, especially when working non-

interactively, which is what we will be doing a lot later on. It

is much better if a pipeline fails early due to an error, than

dragging a NaN value. This also happens with 1og10():
logl10(-10)

Warning: NaNs produced
[1] NaN

So it could be useful to redefine these functions to raise an error
instead, for example like this:

strict_sqrt <- function(x){
if(x < 0) stop("x is negative")

sqrt (x)

This function now throws an error for negative x:

157

6. Functional programming

strict_sqrt(-10)

Error in strict_sqrt(-10) : x is negative

However, it can be quite tedious to redefine every function that
we need in our pipeline, and remember, we don’t want to repeat
ourselves. So, because functions are nothing special, we can
define a function that takes a function as an argument, converts
any warning thrown by that function into an error, and returns
a new function. For example:

strictly <- function(f){
function(...){
tryCatch({
£C.0)
s
warning = function(warning)stop("Can't do
- that chief"))

This function makes use of tryCatch() which catches warn-
ings raised by an expression (in this example the expression
is £(...)) and then raises an error instead with the stop()
function. It is now possible to define new functions like this:

s_sqrt <- strictly(sqrt)

s_sqrt(-4)

Error in value[[3L]](cond) : Can't do that chief

158

6.2. Writing good functions

s_log <- strictly(log)

s_log(-4)

Error in value[[3L]] (cond) : Can't do that chief

Functions that return functions are called function factories and
they’re incredibly useful. 1 use this so much that I've written
a package, available on CRAN, called {chronicler}, that does
this:

s_sqrt <- chronicler::record(sqrt)

result <- s_sqrt(-4)

result

NOK! Value computed unsuccessfully:

This is an object of type “chronicle’.

Retrieve the value of this object with pick(.c,
"value") .

To read the log of this object, call read_log(.c).

Because the expression above resulted in an error, Nothing is
returned. Nothing is a special value defined in the {maybe}
package (check it out, a very interesting package!). We can
then even read a log to see what went wrong:

159

6. Functional programming

chronicler: :read_log(result)

[1] "Complete log:"

[2] "NOK! sqrt() ran unsuccessfully with following
exception: NaNs produced at 2024-04-01 12:34:43"
[3] "Total running time: 0.000795841217041016 secs"

The {purrr} package also comes with function factories that you
might find useful ({possibly}, {safely} and {quietly}).

In part 2 we will also learn about assertive programming, an-
other way of making our functions safer, as an alternative to
using function factories.

6.2.2. Optional arguments

It is possible to make functions’ arguments optional, by using
NULL. For example:

g <- function(x, y = NULL){
if (is.null(y)){
print("optional argument y is NULL")
X
} else {
if(y == 5) print("y is present"); x+y
}
}

Calling g(10) prints the message “Optional argument y is
NULL”, and returns 10. Calling g(10, 5) however, prints “y is
present” and returns 15. It is also possible to use missing():

160

6.2. Writing good functions

g <- function(x, y){
if (missing(y)){
print("optional argument y is missing")
X
} else {
if(y == 5) print("y is present"); x+y
}
}

I however prefer the first approach, because it is clearer which
arguments are optional, which is not the case with the second
approach, where you need to read the body of the function.

6.2.3. Safe functions

It is important that your functions are safe and predictable. You
should avoid writing functions that behave like the nchar () base
function. Let’s see why this function is not safe:

nchar ("10000000")

(1] 8

It returns the expected result of 8. But what if I remove the
quotes?

nchar (10000000)

(1] 5

What is going on here? TI'll give you a hint: simply type
10000000 in the console:

161

6. Functional programming

10000000

[1] 1e+07

10000000 gets represented as 1e+07 by R. This number in scien-
tific notation gets then converted into the character “1e+07” by
nchar (), and this conversion happens silently. nchar() then
counts the number of characters, and correctly returns 5. The
problem is that it doesn’t make sense to provide a number to
a function that expects a character. This function should have
returned an error message, or at the very least raised a warning
that the number got converted into a character. Here is how
you could rewrite nchar () to make it safer:

nchar2 <- function(x, result = 0){

if (!isTRUE(is.character(x))){
stop(paste0("x should be of type
- 'character', but is of type '",

typeof(x), "' instead."))
} else if(x == ""){
result
} else {
result <- result + 1
split_x <- strsplit(x, split = "")[[1]]
nchar2(pasteO(split_x[-1],
collapse = ""), result)

This function now returns an error message if the input is not a
character:

162

6.2. Writing good functions

nchar2(10000000)

Error in nchar2(10000000) : x should be of type
'character', but is of type 'integer' instead.

This section is in a sense an introduction to assertive program-
ming. As mentioned in the section on function factories, we
will be learning about assertive programming in greater detail
in part 2 of the book.

6.2.4. Recursive functions

You may have noticed in the last lines of nchar2() (defined
above) that nchar2() calls itself. A function that calls itself in
its own body is called a recursive function. It is sometimes easier
to define a function in its recursive form than in an iterative form.
The most common example is the factorial function. However,
there is an issue with recursive functions (in the R programming
language, other programming languages may not have the same
problem, like Haskell): while it is sometimes easier to write a
function using a recursive algorithm than an iterative algorithm,
like for the factorial function, recursive functions in R are quite
slow. Let’s take a look at two definitions of the factorial function,
one recursive, the other iterative:

fact_iter <- function(n){
result =1
for(i in 1:n){
result = result * i
}

result

163

6. Functional programming

fact_recur <- function(n){
if(n == 0 || n == 1){
result = 1
} else {
n * fact recur(n-1)
}
}

Using the {microbenchmark} package we can benchmark the
code:

microbenchmark: :microbenchmark(
fact recur(50),
fact_iter(50)

)

Unit: microseconds
expr min 1q mean median
uq max neval
fact_recur(50) 21.501 21.701 23.82701 21.901
22.0515 68.902 100
fact_iter(50) 2.000 2.101 2.74599 2.201
2.3510 21.000 100

We see that the recursive factorial function is 10 times slower
than the iterative version. In this particular example it doesn’t
make much of a difference, because the functions only take mi-
croseconds to run. But if you're working with more complex
functions, this is a problem. If you want to keep using the re-
cursive function and not switch to an iterative algorithm, there
are ways to make them faster. The first is called trampolining.

164

6.2. Writing good functions

I won’t go into details, but if you're interested, there is an R
package that allows you to use trampolining with R, aptly called
{trampoline}!'. Another solution is using the {memoise}? pack-
age. Again, [won’t go into details. So if you want to use and
optimize recursive functions, take a look at these packages.

6.2.5. Anonymous functions

It is possible to define a function and not give it a name. For
example:

function(x) (x+1) (10)

Since R version 4.1, there is even a shorthand notation for anony-
mous functions:

A\ (x) (x+1)) (10)

Because we don’t name them, we cannot reuse them. So why is
this useful? Anonymous functions are useful when you need to
apply a function somewhere inside a pipe once, and don’t want
to define a function just for this. This will become clearer once
we learn about lists, but before that, let’s philosophize a bit.

6.2.6. The Unix philosophy applied to R

This is the Unix philosophy: Write programs that
do one thing and do it well. Write programs to work

Thttps://rdinnager.github.io/trampoline/
https://memoise.r-lib.org/

165

https://rdinnager.github.io/trampoline/
https://memoise.r-lib.org/

6. Functional programming

together. Write programs to handle text streams,
because that is a universal interface.

Doug Mcllroy, in A Quarter Century of Unixz®

We can take inspiration from the Unix philosophy and rewrite
it for our purposes:

Wrrite functions that do one thing and do it well. Write functions
that work together. Write functions that handle lists, because that
is a universal interface.

Strive for writing simple functions that only perform one task.
Don’t hesitate to split a big function into smaller ones. Small
functions that only perform one task are easier to maintain,
test, document and debug. These smaller functions can then
be chained using the |> operator. In other words, it is prefer-
able to have something like:

a |>£0 |>g0O |>h0

where a is for example a path to a data set, and where £(), g()
and h() successively read, clean, and plot the data, than having
something like:

big function(a)

that does all the steps above in one go.

This idea of splitting the problem into smaller chunks, each
chunk in turn split into even smaller units that can be handled
by functions and then the results of these function combined
into a final output is called composition.

The advantage of splitting big_function() into £(), g() and
h() is that you can eat the elephant one bite at a time, and

3https:/ /stackoverflow.com/a/68690065 /1298051

166

6.3. Lists: a powerful data-structure

also reuse these smaller functions in other projects more easily.
So what’s important is that you can make small functions work
together by sharing a common interface. The list is usually a
good candidate for this.

6.3. Lists: a powerful data-structure

Lists are the second important ingredient of functional program-
ming. In the R philosophy inspired by the UNIX philosophy, I
stated that lists are a universal interface in R, so our functions
should handle lists. This of course depends on what it is you're
doing. If you need functions to handle numbers, then there’s lit-
tle value in placing these numbers inside lists. But in practice,
you will very likely manipulate objects that are more complex
than numbers, and this is where lists come into play.

6.3.1. Lists all the way down

Lists are extremely flexible, and most of the very complex ob-
jects classes that you manipulate are actually lists, but just
fancier. For example, a data frame is a list:

data(mtcars)

typeof (mtcars)

[1] "list"

A fitted model is a list:

167

6. Functional programming

my_model <- 1lm(hp ~ mpg, data = mtcars)
typeof (my_model)

[1] "list"

A ggplot is a list:

library(ggplot2)

my_plot <- ggplot(data = mtcars) +
geom_line(aes(y = hp, x = mpg))

typeof (my_plot)

[1] "list"

It’s lists all the way down, and it’s not a coincidence; it’s because
lists are very powerful. So it’s important to know what you can
do with lists.

6.3.2. Lists can hold many things
If you write a function that needs to return many objects, the
only solution is to place them inside a list. For example, consider

this function:

sqrt_newton <- function(a,
init =1

168

6.3. Lists: a powerful data-structure

stopifnot(a >= 0)

while(abs(init**2 - a) > eps){
init <- 1/2 *(init + a/init)
steps <- steps + 1

+
list(
"result" = init,
"'steps" = steps
)

This function returns the square root of a number using New-
ton’s algorithm, as well as the number of steps, or iterations, it
took to reach the solution:

result_list <- sqrt_newton(1600)

result list

$result
[1] 40

$steps
[1] 10

It is quite common to print the number of steps to the console
instead of returning them. But the issue with a function that
prints something to the console instead of returning it, is that
such a function is not pure, as it changes something outside
of its scope (it prints to the console!). And if you need the
information that got printed (for example, if you want to count
all the steps it took to run the script from start to finish), it is
lost. It gets printed, and that’s it. It is preferable to instead

169

6. Functional programming

make the function pure by returning everything inside a neat list.
It is then possible to separately save these objects if needed:

result <- result list$result
result_steps <- result_list$steps

Or you could define functions that know how to deal with the
list:

f <- function(result list){

list(
"result" = result_list$result * 10,
"steps" = result_list$steps + 1
)

f(result_list)

$result
[1] 400

$steps
[1] 11

It all depends on what you want to do. But it is usually better
to keep everything neatly inside a list.

Lists can also hold objects of different types:

list(
"a" = head(mtcars),
"b" = ~Ilm(y ~ x)

170

6.3. Lists: a powerful data-structure

$a
mpg cyl disp hp drat wt qgsec
Vs am
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46
0 1
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02
0 1
Datsun 710 22.8 4 108 93 3.85 2.320 18.61
1 1

Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44
1 0
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02
0 O
Valiant 18.1 6 225 105 2.76 3.460 20.22
1 0

gear carb
Mazda RX4 4
Mazda RX4 Wag
Datsun 710
Hornet 4 Drive
Hornet Sportabout
Valiant

W W Wb
=N PP

$b
~1m(y ~ x)

The list above has two elements, the first is the head of the
mtcars data frame, the second is a formula object. Lists can
even hold other lists:

171

6. Functional programming

list(
"a" = head(mtcars),
"b" = 1list(
"c" = sqrt,

"d" = my_plot # Remember this

< from before?

)
)
$a
mpg cyl
Vs am
Mazda RX4 21.0 6
0 1
Mazda RX4 Wag 21.0 6
0 1
Datsun 710 22.8 4
1 1

Hornet 4 Drive 21.4 6
1 0
Hornet Sportabout 18.7 8
0 O
Valiant 18.1 6
1 0

gear car
Mazda RX4 4
Mazda RX4 Wag 4
Datsun 710 4
Hornet 4 Drive 3
Hornet Sportabout 3
Valiant 3

$b

172

b

=N~

disp
160
160
108
258
360

225

hp
110
110
93
110
175

105

ggplot object

drat

3.90

3.90

3.85

3.08

3.15

2.76

wt

.620

.875

.320

.215

.440

.460

gsec

16.46

17.02

18.61

19.44

17.02

20.22

6.3. Lists: a powerful data-structure

bc

function (x) .Primitive("sqrt")

$odd

300~

o 200~
e

100~

10 15 20 25 30 35
mpg

Use this to your advantage.

6.3.3. Lists as the cure to loops

Loops are incredibly useful, and you are likely familiar with
them. The problem with loops is that they are a concept from
iterative programming, not functional programming, and this
is a problem because loops rely on changing the state of your
program to run. For example, let’s suppose that you wish to use
a for-loop to compute the sum of the first 100 integers:

173

6. Functional programming

result <- 0

for (i in 1:100){
result <- result + i

print (result)

[1] 5050

If you run 1s () now, you should see that there’s a variable i in
your global environment. This could cause issues further down
in your pipeline if you need to re-use i. Also, writing loops is,
in my opinion, quite error prone. But how can we avoid using
loops? Looping in a functional programming language involves
using higher-order functions and lists. A reminder: a higher-
order function is a function that takes another function as an
argument. Looping is a task like any other, so I can write a
function that does the looping. This function, which I'll call
looping (), will take a function as an argument, as well as a list
The list will serve as the container to hold our numbers:

looping <- function(a_list, a_func, init = NULL,

- .01

If the user does not provide an "init~

- value,
set the head of the list as the initial
< value

if(is.null(init)){
init <- a_list[[1]]
a_list <- tail(a_list, -1)

174

6.3. Lists: a powerful data-structure

Separate the head from the tail of the list
and apply the function to the initial value
» and the head of the list

head list = a 1list[[1]]
tail list = tail(a_list, -1)
init = a_func(init, head list, ...)

Check if we're done: if there is still some
< tail,
rerun the whole thing until there's no tail
o left
if (length(tail_list) != 0){
looping(tail list, a_func, init, ...)
}
else {
init

Now, this might seem much more complicated than a for loop.
However, now that we have abstracted the loop away inside a
function, we can keep reusing this function:

looping(as.list(seq(1, 100)), “+7)

[1] 5050

Of course, because this is so useful, looping() actually ships
with R, and is called Reduce():

175

6. Functional programming

Reduce("+, seq(1l, 100)) # the order of the
- arguments is “function® then "list™ for
«~ "Reduce()"

[1] 5050

But this is not the only way that we can loop. We can also write
a loop that applies a function to each element of a list, instead
of operating on the whole list:

result <- as.list(seq(1l, 5))

for (i in seq_along(result)){
result[[i]] <- sqrt(result[[i]])

}

print (result)

[[1]1]
(1] 1

[[2]1]
[1] 1.414214

[[3]]
[1] 1.732051

[[4]]
[1] 2

[[5]]
[1] 2.236068

Here again, we have to pollute the global environment by first

176

6.3. Lists: a powerful data-structure

creating a vessel for our results, and then apply the function at
each index. We can abstract this process away in a function:

applying <- function(a_list, a_func, ...){
head list = a_list[[1]]
tail list = tail(a_list, -1)
result = a_func(head list, ...)

Check if we're done: if there is still some
- tail, rerun the whole thing until there's
-~ no tail left

if (length(tail_list) != 0){

append(result, applying(tail list, a_func,
S)
b
else {
result
}
+

Once again this might seem complicated, and 1 would agree.
Abstraction is complex. But once we have it, we can focus on
the task at hand, instead of having to always tell the computer
what we want:

applying(as.list(seq(1, 5)), sqrt)

[1] 1.000000 1.414214 1.732051 2.000000 2.236068

Of course, R ships with its own, much more efficient, implemen-
tation of this function:

177

6. Functional programming

lapply(list(seq(l, 5)), sqrt)

[[1]]
[11 1.000000 1.414214 1.732051 2.000000 2.236068

In other programming languages, lapply () is often called map ().
The {purrr} package ships with other such useful higher-order
functions that abstract loops away. For example, there’s the
function called map2(), that maps a function of two arguments
to each element of two atomic vectors or lists, two at a time:

library(purrr)

map?2 (
.x = seq(1, B),
.y = seq(1, 5),
f ="+

)

[[1]1]
[1] 2

[[2]1]
(1] 4

[[3]1]
(1] 6

[[4]]
[1] 8

[[5]]
[1] 10

178

6.3. Lists: a powerful data-structure

If you have more than two lists, you can use pmap() instead.

Another important, idiomatic, way to deal with loops in R is to
use matrix algebra instead. For example, to compute the sum
of the first 100 integers, the following approach is possible:

rep(1, 100) %x% seq(l, 100)

[,1]
[1,] 5050

Also, don’t forget that many functions are vectorized by default,
so no loop is required:

sqrt(seq(l, 5))
[1] 1.000000 1.414214 1.732051 2.000000 2.236068
or:

seq(l, B5) + seq(l, 5)

[1] 2 4 6 8 10

Before diving directly into loops, check if the functions you're us-
ing are vectorized, or if there is a simple way to express the com-
putation you want to run in terms of matrix multiplication.

6.3.4. Data frames

As mentioned in the introduction of this section, data frames are
a special type of list of atomic vectors. This means that just as
I can use lapply () to compute the square root of the elements

179

6. Functional programming

of an atomic vector, as shown previously, I can also operate on
all the columns of a data frame. For example, it is possible to
determine the class of every column of a data frame like this:

lapply(iris, class)

$Sepal.Length
[1] "numeric"

$Sepal.Width
[1] "numeric"

$Petal.Length
[1] "numeric"

$Petal.Width
[1] "numeric"

$Species
[1] "factor"

Unlike a list however, the elements of a data frame must be
of the same length. Data frames remain very flexible though,
and using what we have learned until now it is possible to use
the data frame as a structure for all our computations. For
example, suppose that we have a data frame that contains data
on unemployment for the different subnational divisions of the
Grand-Duchy of Luxembourg, the country the author of this
book hails from. Let’s suppose that I want to generate several
plots, per subnational division and per year. Typically, we would
use a loop for this, but we can use what we’ve learned here, as
well as some functions from the {dplyr}, {purrr}, {ggplot2}
and {tidyr} packages. I will be downloading data that I made

180

6.3. Lists: a powerful data-structure

available inside a package, but instead of installing the package,
I will download the .rda file directly (which is the file format
of packaged data) and then load that data into our R session
(instead of downloading from the long Github url, I download
the data from a shortened is.gd link):

Create a temporary file
unemp_path <- tempfile(fileext = ".rda")

Download the data and save it to the path of
- the temporary file
avoids having to install the package from
- Github
download.file(
"https://is.gd/157cNX",
destfile = unemp_path)

Load the data. The data is now available as
- 'unemp'
load (unemp_path)
Let’s load the required packages and take a look at the data:

library(dplyr)

Attaching package: 'dplyr'

The following objects are masked from
'package:stats':

filter, lag

181

6. Functional programming

The following objects are masked from

'package:base':

intersect, setdiff, setequal, union

library(purrr)
library(ggplot2)
library(tidyr)

glimpse (unemp)

Rows: 472

Columns: 9

$ year

2013, 201~

$ place_name

"Capell~

$ level

"Canton", ~

$ total_employed population
1703, ~

$ of _which_wage_earners
1535, ~

$ of _which_non_wage_earners
168, 94,~

$ unemployed

114, 25,~

$ active_population

1817, ~

<dbl>

<chr>

<chr>

<dbl>

<dbl>

<dbl>

<dbl>

<dbl>

2013, 2013,

"Luxembourg",
"Country",

223407, 17802,
203535, 15993,
19872, 1809,
19287, 1071,

242694, 18873,

$ unemployment_rate_in percent <dbl> 7.947044,

5.674773, 6~

Column names are self-descriptive, but the level column needs
some explanations. level contains the administrative divisions

182

6.3. Lists: a powerful data-structure

of the country, so the country of Luxembourg, then the Cantons
and then the Communes.

Remember that Luxembourg can refer to the country, the canton
or the commune of Luxembourg. Now let’s suppose that I want
a separate plot for the three communes of Luxembourg, Esch-
sur-Alzette and Wiltz. Instead of creating three separate data
frames and feeding them to the same ggplot code, I can instead
take advantage of the fact that data frames are lists, and are
thus quite flexible. Let’s start with filtering:

filtered unemp <- unemp %>’
filter(
level == "Commune",
place_name 7%in) c("Luxembourg",
o "Esch-sur-Alzette", "Wiltz")
)

glimpse(filtered_unemp)

Rows: 12

Columns: 9

$ year <dbl> 2013, 2013,
2013, 201~

$ place_name <chr>
"Esch-sur-Alzette", "~

$ level <chr> "Commune",
"Commune", ~

$ total_employed_population <dbl> 12725, 39513,
2344, 1~

$ of _which_wage_earners <dbl> 12031, 35531,
2149, 1~

$ of which non_wage_earners <dbl> 694, 3982, 195,
703, ~

183

6. Functional programming

$ unemployed <dbl> 2054, 3855,
318, 1997~

$ active_population <dbl> 14779, 43368,
2662, 1~

$ unemployment_rate_in_percent <dbl> 13.898099,
8.889043, ~

We are now going to use the fact that data frames are lists, and
that lists can hold any type of object. For example, remember
this list from before where one of the elements is a data frame,
and the second one a formula:

list(
"a" = head(mtcars),
"p" = ~1m(y ~ x)
)
$a
mpg cyl disp hp drat wt gsec
Vs am
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46
0 1
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02
0 1
Datsun 710 22.8 4 108 93 3.85 2.320 18.61
1 1

Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44
1 0
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02
0 O

Valiant 18.1 6 225 105 2.76 3.460 20.22
1 0

gear carb
Mazda RX4 4 4

184

6.3. Lists: a powerful data-structure

Mazda RX4 Wag
Datsun 710

Hornet 4 Drive
Hornet Sportabout
Valiant

W W Wb
NP e

$b
~1m(y ~ x)

{dplyr} comes with a function called group_nest() which
groups the data frame by a variable (such that the next
computations will be performed group-wise) and then nests the
other columns into a smaller data frame. Let’s try it and see
what happens:

nested_unemp <- filtered_unemp 7%>%
group_nest (place_name)

Let’s see what this looks like:

nested_unemp

A tibble: 3 x 2

place_name data
<chr> <list<tibble[,8]>>
1 Esch-sur-Alzette [4 x 8]
2 Luxembourg [4 x 8]
3 Wiltz [4 x 8]

nested_unemp is a new data frame of 3 rows, one per com-
mune (“Esch-sur-Alzette”, “Luxembourg”, “Wiltz”), and of two
columns, one for the names of the communes, and the other
contains every other variable inside a smaller data frame. So
this is a data frame that has one column where each element of

185

6. Functional programming

that column is itself a data frame. Such a column is called a
list-column. This is essentially a list of lists.

Let’s now think about this for a moment. If the column titled
data is a list of data frames, it should be possible to use a
function like map () or lapply () to apply a function on each of
these data frames. Remember that map() or lapply() require
a list of elements of whatever type and a function that accepts
objects of this type as input. So this means that we could apply
a function that plots the data to each element of the column
titled data. Since each element of this column is a data frame,
this function needs a data frame as an input. As a first and
simple example to illustrate this, let’s suppose that we want to
determine the number of rows of each data frame. This is how
we would do it:

nested_unemp %>%
mutate(nrows = map(data, nrow))

A tibble: 3 x 3

place_name data nrows
<chr> <list<tibblel[,8]>> <list>
1 Esch-sur-Alzette [4 x 8] <int [1]>
2 Luxembourg [4 x 8] <int [1]>
3 Wiltz [4 x 8] <int [1]>

’data’ is the name of
the list-column that contains
the smaller data frames

The new column, titled nrows is a list of integers. We can sim-

plify it by converting it directly to an atomic vector of integers
by using map_int () instead of map():

186

6.3. Lists: a powerful data-structure

nested_unemp %>7
mutate(nrows = map_int(data, nrow))

A tibble: 3 x 3

place_name data nrows
<chr> <list<tibble[,8]>> <int>
1 Esch-sur-Alzette [4 x 8] 4
2 Luxembourg [4 x 8] 4
3 Wiltz [4 x 8] 4

Let’s try a more complex example now. What if we want to
filter rows (of course, the simplest way would be to filter the
rows we need before nesting the data frame)? We need to apply
the function filter () where its first argument is a data frame
and the second argument is a predicate:

nested_unemp %>%
mutate(nrows = map(data, \(x)filter(x, year ==
< 2015)))

A tibble: 3 x 3

place_name data nrows

<chr> <list<tibblel[,8]>> <list>
1 Esch-sur-Alzette [4 x 8] <tibble [1 x
81>
2 Luxembourg [4 x 8] <tibble [1 x
8]>
3 Wiltz [4 x 8] <tibble [1 x
81>

In this case, we need to use an anonymous function. This is be-
cause filter () has two arguments and we need to make clear
what it is we are mapping over and what argument stays fixed;

187

6. Functional programming

we are mapping over (iterating) the data frames but the predi-
cate year == 2015 stays fixed.

We are now ready to plot our data. The best way to continue
is to first get the function right by creating one plot for one

single commune. Let’s select the dataset for the commune of
Luxembourg:

lux_data <- nested_unemp 7%>%

filter(place_name == "Luxembourg") %>%
unnest (data)

To plot this data, we can now write the required ggplot2()
code:

ggplot(data = lux_data) +
theme minimal() +
geom_line(
aes(year, unemployment_rate_in_percent,
- group = 1)
)+
labs(title = "Unemployment in Luxembourg")

188

6.3. Lists: a powerful data-structure

Unemployment in Luxembourg

8.7

8.4

8.1

unemployment_rate_in_percent

2013 2014 2015 2016
year

To turn the lines of code above into a function, you need to think
about how many arguments that function would have. There is
an obvious one, the data itself (in the snippet above, the data
is the lux_data object). Another one that is less obvious is in
the title:

labs(title = "Unemployment in Luxembourg")

Ideally, we would want that title to change depending on the
data set. So we could write the function like so:

make plot <- function(x, y){
ggplot(data = x) +
theme minimal() +
geom_line(
aes(year, unemployment_rate_in_percent,
- group = 1)
)+

189

6. Functional programming

labs(title = paste("Unemployment in", y))

Let’s try it on our data:

make plot(lux_data, "Luxembourg")

Unemployment in Luxembourg

8.7

8.4

8.1

unemployment_rate_in_percent

2013 2014 2015 2016
year

Ok, so now, we simply need to apply this function to our nested
data frame:

nested_unemp <- nested_unemp %>7
mutate(plots = map2(
.X data, # column of data frames
.y = place_name, # column of commune names
.f = make_plot
))

190

6.3. Lists: a powerful data-structure

nested_unemp

A tibble: 3 x 3

place_name data plots
<chr> <list<tibble[,8]>> <list>
1 Esch-sur-Alzette [4 x 8] <gg>
2 Luxembourg [4 x 8] <gg>
3 Wiltz [4 x 8] <gg>

If you look at the plots column, you see that it is a list of gg
objects: these are our plots. Let’s take a look at them:

nested_unemp$plots

[[1]]

Unemployment in Esch—sur—Alzette

135

13.0

unemployment_rate_in_percent

2013 2014 2015 2016
year

191

6. Functional programming

[[2]]

Unemployment in Luxembourg

@
]

®
N

unemployment_rate_in_percent
[e0]
=

2013 2014 2015 2016
year

[[3]]

192

6.3. Lists: a powerful data-structure

Unemployment in Wiltz

= =
N N
o =

s
=
©

unemployment_rate_in_percent
- [
- [
~ o

-
=
o

2013 2014 2015 2016
year

We could also have used an anonymous function (but it is more
difficult to get right):

nested_unemp %>%
mutate(plots2 = map2(

.xX = data,
.y = place_name,
= \Cx,.y)(

ggplot(data = .x) +
theme minimal() +
geom_line(
aes(year,
- unemployment_rate_in_percent,
& group = 1)
)+

193

6. Functional programming

labs(title =
- paste("Unemployment in",
s .y))
)
)
) %>h
pull(plots2)

[[1]]

Unemployment in Esch-sur-Alzette

135

13.0

unemployment_rate_in_percent

2013 2014 2015 2016
year

[[2]1]

194

6.3. Lists: a powerful data-structure

Unemployment in Luxembourg

8.7

8.4

8.1

unemployment_rate_in_percent

2013 2014 2015 2016
year

[[31]

Unemployment in Wiltz
12.1

12.0
11.9
11.8

11.7

unemployment_rate_in_percent

11.6

2013 2014 2015 2016
year

195

6. Functional programming

This list-column based workflow is extremely powerful and I
highly advise you to take the required time to master it. Remem-
ber, we never want to have to repeat ourselves. This approach
might seem more complicated than calling make plot() three
times, but imagine that you need to do this for several coun-
tries, several variables, etc.. What are you going to do, copy
and paste code everywhere? This gets very tedious and more
importantly, very error-prone, because now you've just intro-
duced many points of failure by having so much copy-pasted
code. You could of course use a loop instead of this list-column
based workflow. But as mentioned, the issue with loops is that
you have to interact with the global environment, which can
lead to other issues. But whatever you end up using, you need
to avoid copy and pasting at all costs.

6.4. Functional programming in R

Up until now I focused on general concepts rather than on
specifics of the R programming language when it comes to func-
tional programming. In this section, we will be focusing entirely
on R-specific capabilities and packages for functional program-
ming.

6.4.1. Base capabilities

R is a functional programming language (but not only), and as
such it comes with many functions out of the box to write func-
tional code. We have already discussed lapply () and Reduce().
You should know that depending on what you want to achieve,
there are other functions that are similar to lapply (): apply(),
sapply (), vapply(), mapply() and tapply(). There’s also

196

6.4. Functional programming in R

Map () which is a wrapper around mapply (). Each function per-
forms the same basic task of applying a function over all the
elements of a list or list-like structure, but it can be hard to
keep them apart and when you should use one over another.
This is why {purrr}, which we will discuss in the next section,
is quite an interesting alternative to base R’s offering.

Another one of the quintessential functional programming
functions (alongside Reduce() and Map()) that ships with R
is Filter(). If you know dplyr::filter() you should be
familiar with the concept of filtering rows of a data frame
where the elements of one particular column satisfy a predicate.
Filter () works the same way, but focusing on lists instead of
data frame:

Filter(is.character,

list(
seq(1, 5),
"Hey”)
)
[[1]1]
[1] "Hey"

The call above only returns the elements where is.character()
evaluates to TRUE.

Another useful function is Negate () which is a function factory
that takes a boolean function as an input and returns the op-
posite boolean function. As an illustration, suppose that in the
example above we wanted to get everything but the character:

Filter(Negate(is.character),
list(

197

6. Functional programming

seq(1, 5),
uHeyn)
)

[[11]
[1] 12345

There are some other functions like this that you might want to
check out: type ?Negate in console to read more about them.

Sometimes you may need to run code with side-effects, but want
to avoid any interaction between these side-effects and the global
environment. For example, you might want to run some code
that creates a plot and saves it to disk, or code that creates
some data and writes them to disk. local() can be used for
this. local() runs code in a temporary environment that gets
discarded at the end:

local({
a <- 2

i)

Variable a was created inside this local environment. Checking
if it exists now yields FALSE:

exists("a")

[1] FALSE

We will be using this technique later in the book to keep our
scripts pure.

Before continuing with R packages that extend R’s functional
programming capabilities it’s also important to stress that just

198

6.4. Functional programming in R

as R is a functional programming language, it is also an object
oriented language. In fact, R is what John Chambers called a
functional OOP language (Chambers (2014)). I won’t delve too
much into what this means (read Wickham (2019) for this), but
as a short discussion, consider the print () function. Depending
on what type of object the user gives it, it seems as if somehow
print () knows what to do with it:

print(5)
[1] 5
print (head(mtcars))
mpg cyl disp hp drat wt gsec
Vs am
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46
0 1
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02
0 1
Datsun 710 22.8 4 108 93 3.85 2.320 18.61
1 1

Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44
1 0
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02
0 0

Valiant 18.1 6 225 105 2.76 3.460 20.22
1 0
gear carb
Mazda RX4 4 4
Mazda RX4 Wag 4 4
Datsun 710 4 1
Hornet 4 Drive 3 1

199

6. Functional programming

Hornet Sportabout 3 2
Valiant 3 1

print(str(mtcars))

'data.frame': 32 obs. of 11 variables:

$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4
22.8 19.2 ...

$cyl :num 6646868446 ...

$ disp: num 160 160 108 258 360 ...

$ hp : num 110 110 93 110 175 105 245 62 95 123

drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69
.92 3.92 ...

wt : num 2.62 2.88 2.32 3.21 3.44 ...

gsec: num 16.5 17 18.6 1 7 ...

Vs ! num
am : num

€hH A P H P WeH -

gear: num
$ carb: num
NULL

9.4 1
111 ...
000 ...
4 4 4
224

I ")
D> = O
i N
= W O -
N W O O
= W o =
> w O O

This works by essentially mixing both functional and object-
oriented programming, hence functional OOP. Let’s take a closer
look at the source code of print () by simply typing print with-
out brackets, into a console:

print

function (x, ...)

UseMethod ("print")

<bytecode: 0x55b6dc32ffd0>
<environment: namespace:base>

200

6.4. Functional programming in R

Quite unexpectedly, the source code of print () is one line long
and is just UseMethod("print"). So all print() does is use
a generic method called “print”. If your text editor has auto-
completion enabled, you might see that there are actually many
print () functions. For example, type print.data.frame into
a console:

print.data.frame

function (x, ..., digits = NULL, quote = FALSE,
right = TRUE,
row.names = TRUE, max = NULL)
{
n <- length(row.names(x))
if (length(x) == OL) {
cat(sprintf(ngettext(n, "data frame with 0
columns and %d row",
"data frame with O columns and %d
rows"), n), "\n",
sep = "")
}
else if (n == OL) {
print.default(names(x), quote = FALSE)
cat(gettext("<0 rows> (or O-length
row.names)\n"))
}
else {
if (is.null(max))
max <- getOption("max.print", 99999L)
if ('is.finite(max))
stop("invalid 'max' /
getOption(\"max.print\"): ",
max)

201

6. Functional programming

omit <- (n0 <- max%/%length(x)) < n
m <- as.matrix(format.data.frame(if (omit)
x[seq_len(n0), , drop = FALSE]
else x, digits = digits, na.encode = FALSE))
if (!'isTRUE(row.names))
dimnames (m) [[1L]] <- if
(isFALSE(row.names))
rep.int("", if (omit)

n0
else n)
else row.names
print(m, ..., quote = quote, right = right,
max = max)
if (omit)
cat(" [reached 'max' /
getOption(\"max.print\") -- omitted",
n - n0, "rows]\n")
}
invisible(x)

+
<bytecode: 0x55b6del6e258>
<environment: namespace:base>

This is the print function for data.frame objects. So what
print () does, is look at the class of its argument x, and then
look for the right print function to call. In more traditional
OOP languages, users would type something like:

mtcars.print()
In these languages, objects encapsulate methods (the equiva-
lent of our functions), so if mtcars is a data frame, it encap-

sulates a print() method that then does the printing. R is
different, because classes and methods are kept separate. If a

202

6.4. Functional programming in R

package developer creates a new object class, then the developer
also must implement the required methods. For example in the
{chronicler} package, the chronicler class is defined along-
side the print.chronicler () function to print these objects.

All of this to say that if you want to extend R by writing pack-
ages, learning some OOP essentials is also important. But for
data analysis, functional programming does the job perfectly
well. To learn more about R’s different OOP systems (yes, R
can do OOP in different ways and the one I sketched here is the
simplest, but probably the most used as well), take a look at
Wickham (2019).

6.4.2. purrr

The {purrr} package, developed by Posit (formerly RStudio),
contains many functions to make functional programming with
R more smooth. In the previous section, we discussed the
apply () family of function; they all do a very similar thing,
which is looping over a list and applying a function to the
elements of the list, but it is not quite easy to remember which
one does what. Also, for some of these functions like apply (),
the list argument comes first, and then the function, but in
the case of mapply(), the function comes first. This type of
inconsistencies can be frustrating. Another issue with these
functions is that it is not always easy to know what type the
output is going to be. List? Atomic vector? Something else?

{purrr} solves this issue by offering the map() family of func-
tions, which behave in a very consistent way. The basic function
is called map () and we’ve already used it:

map(seq(l, 5), sqrt)

203

6. Functional programming

[[1]1]
(1] 1

[[2]1]
[1] 1.414214

[[3]]
[1] 1.732051

[[4]]
[1] 2

[[5]]
[1] 2.236068

But there are many interesting variants:

map_dbl(seq(l, 5), sqrt)

[1] 1.000000 1.414214 1.732051 2.000000 2.236068

map_dbl() coerces the output to an atomic vector of doubles
instead of a list of doubles. Then there’s:

map_chr(letters, toupper)

[1] IIAII |IBI| llCll I|Dll |IEI| llFll IlGII llHIl IlIll |IJI| IIKH llLlI
|IMI| IINII
[15] IIOII IIPII IIQII I|Rll |ISI| llTll IIUII IIVII llwll IIXH IIY" Ille

for when the output needs to be an atomic vector of charac-
ters.

204

6.4. Functional programming in R

There are many others, so take a look at the documentation
with ?map. There’s also walk() which is used if you're only
interested in the side-effect of the function (for example if the
function takes paths as input and saves something to disk).

{purrr} also has functions to replace Reduce (), simply called
reduce() and accumulate(), and there are many, many other
useful functions. Read through the documentation of the pack-
age* and take the time to learn about all it has to offer.

6.4.3. withr

{withr} is a powerful package that makes it easy to “purify”
functions that behave in a way that can cause problems. Re-
member the function from the introduction that randomly gave
out a dish Bruno liked? Here it is again:

h <- function(name, food list = list()){

food <- sample(c("lasagna", "cassoulet",
-~ "feijoada"), 1)

food_list <- append(food_list, food)
print (pasteO(name, " likes ", food))

food_list
}

For the same input, this function may return different outputs
so this function is not referentially transparent. So we improved

“https://purrr.tidyverse.org/reference/index.html

205

https://purrr.tidyverse.org/reference/index.html
https://purrr.tidyverse.org/reference/index.html

6. Functional programming

the function by adding calls to set.seed () like this:

h2 <- function(name, food list = list(), seed =
o 123)4

We set the seed, making sure that we get the
~ same selection of food for a given seed
set.seed(seed)

food <- sample(c("lasagna", "cassoulet",

-~ "feijoada"), 1)

We now need to unset the seed, because if we
» don't, guess what, the seed will stay set
«~ for the whole session!

set.seed (NULL)

food_list <- append(food_list, food)

print (pasteO(name, " likes ", food))

food_list
The problem with this approach is that we need to modify our
function. We can instead use withr::with_seed() to achieve

the same effect:

withr::with seed(seed = 123,
h("Bruno"))

[1] "Bruno likes feijoada"

[[1]]

206

6.4. Functional programming in R

[1] "feijoada"

It is also easier to create a wrapper if needed:

h3 <- function(..., seed){
withr::with seed(seed = seed,
h(...))
}

h3("Bruno", seed = 123)

[1] "Bruno likes feijoada"

[[1]1]
[1] "feijoada"

In a previous example we downloaded a dataset and loaded it
into memory; we did so by first creating a temporary file, then
downloading it and then loading it. Suppose that instead of
loading this data into our session, we simply wanted to test
whether the link was still working. We wouldn’t want to keep
the loaded data in our session, so to avoid having to delete it
again manually, we could use with_tempfile():

withr::with_tempfile("unemp", {
download.file(
"https://is.gd/157cNX",
destfile = unemp)
load (unemp)
nrow (unemp)

3

207

6. Functional programming

[1] 472

The data got downloaded, and then loaded, and then we com-
puted the number of rows of the data, without touching the
global environment, or state, of our current session.

Just like for {purrr}, {withr} has many useful functions which
I encourage you to familiarize yourself with®.

6.5. Conclusion

If there is only one thing that you should remember from this
chapter, it would be pure functions. Writing pure functions is
in my opinion not very difficult to do and comes with many
benefits. But avoiding loops and replacing them with higher-
order functions (lapply(), Reduce(), purrr::map() — and its
variants —) also pays off. While this chapter stresses the ad-
vantages of functional programming, you should not forget that
R is not a pure, and solely, functional programming language
and that other paradigms, like object-oriented programming, are
also available to you. So if your goal is to master the language
(instead of “just” using it to solve data analysis problems), then
you also need to know about R’s OOP capabilities.

Shttps://withr.r-lib.org/reference/index.html

208

https://withr.r-lib.org/reference/index.html

7. Literate programming

You now know about version control, how to collaborate us-
ing Github.com and functional programming. By only learning
about this, you have already made some massive steps towards
making your projects reproducible. Especially by using Git and
Github. Even if you're using private repos and work in the pri-
vate sector, by using version control, you ensure that reusing
this code for future projects is much easier. Auditing is greatly
simplified as well.

But this book is still far from over. Let’s think about our project
up until now. We have downloaded some data, and wrote code
to analyse it. Fair enough. But usually, we don’t really stop
there. We now need to write a report, or maybe a Powerpoint
presentation. If you're a researcher, you still need to write a
paper, just getting the results is not enough, and if you work in
the private sector, you also need to present the results of your
analysis to management.

209

7. Literate programming

Back to square one,
curse the Gods
Change request,

Clean, mssssmm) Draft report wsssssssd update to data, notice

analyse data mistake

This step involves copy
and pasting graphs into
Word, or Powerpoint and
updating tables with
summary statistics and
regressions...

Figure 7.1.: The cursed report drafting loop.

The problem is that writing code, getting some results, and
putting these results into a document (it doesn’t matter what
kind) is often very tedious. The picture above illustrates this
cursed report drafting loop. Get some results, copy and paste
images into Word or Powerpoint, get a change request, or notice
a mistake, and start from scratch again. If you're using LaTeX
it’ll be easier for pictures, but you’ll still need to update tables
by hand each time you need to touch your analysis code.

Worse, what if you start with a Word or LaTeX document, but
then get asked to make a Powerpoint presentation as well? Then
you need to copy and paste everything again, but this time into
Powerpoint... and if you get a change request after you're done
and need to start over, you might seriously consider raising goats
instead of dealing with this again.

But if we can make the loop look like this instead:

210

7.1. A quick history of literate programming

Back to square one,
but with a smile

Change request,

Draft report, which includes) update to data, notice

clean_lng and analysing the mistake
data in one go

Figure 7.2.: The holy report drafting loop.

Basically, everything from cleaning, analysing and drafting is
done in one single step? Well, this is what literate programming
enables you to do. And even if you get asked to make a Power-
point presentation, you can start from the same source code as
the original report, and remove everything that you don’t need
and compile to a Powerpoint (or Beamer) presentation.

7.1. A quick history of literate
programming

In literate programming, authors mix code and prose, which
makes the output of their programs not just a series of tables,
or graphs or predictions, but a complete report that contains
the results of the analysis directly embedded into it. Scripts
written using literate programming are also very easy to compile,
or render, into a variety of document formats like html, docx,
pdf or even pptx. R supports several frameworks for literate
programming: Sweave, knitr and Quarto.

Sweave was the first tool available to R (and S) users, and al-
lowed the mixing of R and LaTeX code to create a document.
Friedrich Leisch developed Sweave in 2002 and described it in

211

7. Literate programming

his 2002 paper (Leisch 2002). As Leisch argues, the traditional
way of writing a report as part of a statistical data analysis
project uses two separate steps: running the analysis using some
software, and then copy and pasting the results into a word pro-
cessing tool (as illustrated above). To really drive that point
home: the problem with this approach is that much time is
wasted copy and pasting things, so experimenting with differ-
ent layouts or data analysis techniques is very time-consuming.
Copy and paste mistakes will also happen (it’s not a question
of if, but when) and updating reports (for example, when new
data comes in) means that someone will have, again, to copy
and paste the updated results into a new document.

Sweave makes it possible to embed the analysis in the final docu-
ment itself, by providing a way to mix LaTeX and R code which
gets executed whenever the final, output document gets com-
piled. This gives practitioners considerable time savings because
it eliminates the copy and pasting of results from R outputs into
a document.

The snippet below shows the example from Leisch’s paper:

\documentclass [adpaper]{article}
\begin{document}

In this example we embed parts of the examples from
the

\texttt{kruskal.test} help page into a LaTeX
document:

<L>>=

data (airquality)

kruskal.test(0Ozone ~ Month, data = airquality)
C]

212

7.1. A quick history of literate programming

which shows that the location parameter of the Ozone
distribution varies significantly from month to
month.

Finally we include a boxplot of the data:

\begin{center}

<<fig=TRUE, echo=FALSE>>=

boxplot(0Ozone ~ Month, data = airquality)
C]

\end{center}

\end{document}

Even if you’ve never seen a LaTeX source file, you should be able
to figure out what’s going on. The first line states what type of
document we’re writing. Then comes \begin{document} which
tells the compiler where the document starts. Then comes the
content. You can see that it’s a mixture of plain English with R
code defined inside chunks starting with <<>>= and ending with
@. Finally, the document ends with \end{document}. Getting
a human-readable PDF from this source is a two-step process:
first, this source gets converted into a .tex file and then this
.tex file into a PDF. Sweave is included with every R installa-
tion since version 1.5.0, and still works to this day. For example,
we can test that our Sweave installation works just fine by com-
piling the example above. This is what the final output looks
like:

213

7. Literate programming

In this example we embed parts of the examples from the kruskal.test
help page into a ITEX document:

> data (airquality)
> kruskal.test(0zone ~ Month, data = airquality)

Kruskal-Wallis rank sum test

data: Ozone by Month
Kruskal-Wallis chi-squared = 29.267, df = 4, p-value = 6.901e-06

which shows that the location parameter of the Ozone distribution varies
significantly from month to month. Finally we include a boxplot of the data:

- :
2 4
o
f=1
2 o
o G
S
3 o
o 5]
o
[+ _
o -
