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Welcomel!

How using a few ideas from software
engineering can help data scientists,
analysts and researchers write reliable
code

Data scientists, statisticians, analysts, researchers, and many
other professionals write a lot of code.

Not only do they write a lot of code, but they must also read
and review a lot of code as well. They either work in teams and
need to review each other’s code, or need to be able to repro-
duce results from past projects, be it for peer review or auditing
purposes. And yet, they never, or very rarely, get taught the
tools and techniques that would make the process of writing,
collaborating, reviewing and reproducing projects possible.

Which is truly unfortunate because software engineers face the
same challenges and solved them decades ago.

The aim of this book is to teach you how to use some of the best
practices from software engineering and DevOps to make your
projects robust, reliable and reproducible. It doesn’t matter if
you work alone, in a small or in a big team. It doesn’t matter
if your work gets (peer-)reviewed or audited: the techniques
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presented in this book will make your projects more reliable
and save you a lot of frustration!

As someone whose primary job is analysing data, you might
think that you are not a developer. It seems as if developers are
these genius types that write extremely high-quality code and
create these super useful packages. The truth is that you are a
developer as well. It’s just that your focus is on writing code
for your purposes to get your analyses going instead of writing
code for others. Or at least, that’s what you think. Because in
others, your team-mates are included. Reviewers and auditors
are included. Any people that will read your code are included,
and there will be people that will read your code. At the very
least future you will read your code. By learning how to set up
projects and write code in a way that future you will understand
and not want to murder you, you will actually work towards
improving the quality of your work, naturally.

The book can be read for free on https://raps-with-r.dev and
you can buy a DRM-free Epub or PDF on Leanpub'.

You can submit issues, PRs and ask questions on the book’s
Github repository?.

Thttps://leanpub.com /raps-with-r/
Zhttps://github.com /b-rodrigues /rap4all
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Preface

In the summer of 2022, a former colleague from my first job
asked me if [ wanted to help him teach a class at the University
of Luxembourg. It was a class for the Master’s of Data Science,
and the class was supposed to be taught by non-academics like
us. The idea was to teach the students some “real-world” skills
from the industry. It was a 40 hours class, and naturally we
split them equally between us; my colleague focused on time
series statistics but I really didn’t know what I should do. 1
knew I wanted to teach, I always liked teaching, but I am a
public servant in the ministry of higher education and research
in Luxembourg. Istill code a lot, but I don’t do exciting machine
learning anymore, or advanced econometrics like my colleague.
Before (re)joining the public service I was a senior data scientist
and then manager in one of the big four accounting firms. Before
that, and this is where my colleague and I met, I was a research
assistant in the research department of the national statistical
institute of statistics in Luxembourg, and my colleague is still
an applied researcher there.

What could I teach these students? What “skills from the indus-
try” could I possibly share with them? I am an expert in nothing
in particular. Actually, I don’t really know anything very deeply,
but know at least a little about many different things. There are
many self-help books out there that state that it’s better to know
a lot about only a few, maybe even only one, topic, than know
a lot about many topics. I tend to disagree with this; at least
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in my experience, knowing enough about many different topics
always allowed me to communicate effectively with many differ-
ent people, from researchers focusing on very specific topics that
needed my help to assist them in their research, to clients from
a wide range of industries that were sharing their problems with
me in my consulting years. If I needed to deepen my knowledge
on a particular topic before I could intervene, I had the neces-
sary theoretical background to grab a few books and learn the
material. Also, I was never afraid of asking questions.

This is reflected in my blogging. As I'm writing these lines
(beginning of 2023), I have been blogging for about ten years.
Most of my blog posts are me trying to lay out a problem I
had at work and how I solved it. Sometimes I do some things
for pleasure or curiosity, like the two posts on the video game
nethack, or the ones on 19th century newspapers where I learned
a lot about NLP. Because I was lucky enough to work with
different people from many backgrounds, I always had to solve
a very wide range of problems.

But that still didn’t really help me to find a topic to teach..
but then it dawned on me. Even though in my career I had
to help many different people with many different backgrounds
and needs, there were two things that everyone always required:
traceability and reliability.

Everyone wanted to know how I came to the conclusions that I
came to, and most of them even wanted to be able to reproduce
my steps as a form of double checking what I did (consultants
are expensive, so you better make sure that they're worth their
hourly rate!). When I was a manager, I applied the same logic
to my teammates. I wanted to be able to understand what they
were doing, or at least know that if I needed to review their work
deeply, the possibility was there.


https://www.brodrigues.co/blog/2018-11-03-nethack_analysis/
https://www.brodrigues.co/blog/2018-11-03-nethack_analysis/
https://www.brodrigues.co/blog/2019-01-04-newspapers/
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So what I had to teach these students of data science was some
best practices in software engineering. Most people working
with data don’t get taught software engineering skills. Courses
focus on probability theory, linear algebra, algorithms, and pro-
gramming but not software engineering. That’s because soft-
ware engineering skills get taught to software engineers. But
while statisticians, data scientists, (or whatever we get called
these days), are not software engineers, they do write a lot of
code. And code that is quite important at that. And yet, most
of us do work like pigs (no disrespect to pigs).

For example, how much of the code you write that produces very
sensitive and important results, be it in science or in industry,
is thoroughly tested? How much of the code you use relies on a
single person showing up for work and using some secret knowl-
edge that is undocumented? What if that person ends up under
a bus? How much code do you run that no one dares touch
anymore because that one person from before did end up under
a bus?

How many people do you have to ping when you need to get an
update to a quarterly report? How many people do you have
to ping to know how Table 3 from that report from 2020 that
was quickly put together during the Covid-19 lockdowns was
computed? Are all the people involved even working in your
company still?

When collaborating with teammates to write a report or scien-
tific paper, do you consider potential risks? (If you're wondering
What risks? then you're definitely not considering them.)

Are you able to tell anyone, exactly, how that number that gets
used by the CEO in that one report was made? What if there’s
an investigation, or some external audit? Would the auditors
be able to run the code and understand what is going on with



Preface

as little intervention as possible (ideally none) from you? But
I don’t work in an industry that gets audited, you may think.
Well, maybe not, or maybe one day your work will get audited
anyways. Maybe it’ll get audited internally for whatever reason.
Maybe there’s a new law that went into force that requires your
work, or parts of your work, to be easily traceable.

And if you’re a scientist, your work does get audited, or at least it
should be in theory. I don’t know any scientist (and I know more
scientists than the average person, thanks to my background and
current job) that is against the idea of open science, open data,
reproducibility, and so on. Not one. But in practice, how many
papers are truly reproducible? How many scientific results are
auditable and traceable?

Lack of traceability and reproducibility can sometimes lead to
serious consequences. If you're in the social sciences, you likely
know about the Reinhart and Rogoff paper. Reinhard and Ro-
goff are two American economists that published a paper in 2010
that showed that when countries are too much in debt (over
60% of GDP according to the authors) then annual growth de-
creases by two percent. These papers provided an empirical
justification for austerity measures in the aftermath of the 2009
European debt crisis. But there was a serious problem with the
Reinhard and Rogoff paper. It’s not that they somehow didn’t
use the correct theoretical framework or modelling procedure in
their paper. It’s not that their assumptions were disputable or
too unrealistic. It’s that they performed their calculations inside
an Excel spreadsheet and did not, and this is not a joke, they
did not select every country’s real GDP growth to compute the
average real GDP growth for high-debt countries:
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Figure 1.: You can see that not all countries are selected...

(source to image, archived link?)

And this is not the only problem with this paper.

The problem is not that this mistake was made. Reinhard and
Rogoff are only human and mistakes can happen. What’s prob-
lematic is that this was picked up and corrected too late. In an
ideal world, Reinhard and Rogoff would not have used tools that
make mistakes like this almost impossible to find once they’re
made. Instead, they would have used tools that would have
made such a thing not happen in the first place, or, as a sec-
ond best, making it easier and faster for someone else to find
this mistake. And this is not something that is only useful in
research, but also in any industry. Being able to trust results,

3https://archive.is/DTGpC
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tracing back calculations and auditing are not only concerns of
researchers.

So this is what I decided to teach the students: how they could
structure their projects in such a way that they could spot prob-
lems like that during development, but also make it easy to re-
produce and retrace who did what and when. I wrote my course
notes into a freely available bookdown that I used for teaching.
When I started compiling my notes, I discovered the concept
Reproducible Analytical Pipelines as developed by the Office for
National Statistics (henceforth ONS). I found the name “Repro-
ducible Analytical Pipeline” (henceforth RAP) really perfect for
what I was aiming at. The ONS team responsible for evangelis-
ing RAPs also published a free ebook in 2019 already. Another
big source of inspiration is Software Carpentry to which I was
exposed during my PhD years, around 2014-ish if memory serves.
While working on a project with some German colleagues from
the University of Bonn, the principal investigator made us work
using these concepts to manage the project. I was really im-
pressed by it, and these ideas and techniques stayed with me
since then.

The bottom line is: the ideas I'm presenting here are nothing
new. It’s just that I took some time to compile them and make
them accessible and interesting (at least I hope so) for users of
the R programming language.

At least my students found the course interesting. But not just
students. I tweeted about this course and shared the notes with
a wider audience, and this is when I got very positive feedback
from people that were not my students. People wanted to buy
this as a book and go deeper into the topics laid out. This is
when I realised that, as far as I know, there is not a practical
book available discussing these topics. So I decided to write one,
but I took my time getting started. What finally, really, got me


https://rap4mads.eu/
https://analysisfunction.civilservice.gov.uk/support/reproducible-analytical-pipelines/
https://analysisfunction.civilservice.gov.uk/support/reproducible-analytical-pipelines/
https://ukgovdatascience.github.io/rap_companion/
https://software-carpentry.org/
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working on it was when Dmytro Perepolkin reached out to me
and suggested I contact several persons to get their inputs and
ideas and get started. I followed his advice, and this led to very
fruitful discussions with Sébastien Rochette, Miles McBain and
Dmytro. Their ideas and inputs definitely improved the quality
of this book, so many thanks to them. Also thanks to David
Solito, Matan Hakim, Stas Kolenikov, Sam Parmar, Chuck, Ma-
tous Eibich, Jonathan Moore, Alain Vagner and Matthias Meik-
sner for proofreading the book and providing valuable feedback
and fixes. And thank you, dear reader, for picking this up!

This book is divided into two parts. The first part teaches you
what I believe is essential knowledge you should possess in order
to write truly reproducible pipelines. This essential knowledge
is constituted of:

» Version control with Git and how to manage projects with
Github;

» Functional programming;

o Literate programming.

The main idea from part 1 is “don’t repeat yourself”. Git and
Github will help us avoid losing code, and losing track of who
should do what in a project (even if you're working alone on a
project, you will see that using Git and Github will save you
many hours and headaches). Getting familiar with functional
and literate programming should improve the quality of our code
by avoiding two common sources of mistakes: computing results
that rely on the state of our program (and later, the state of the
whole hardware we are using) and copy and paste mistakes.

The second part of the book will then build upon this knowledge
to introduce several tools that will help us go beyond the benefits
of version control and functional and literate programming:

e Dependency management with {renv};


https://github.com/dmi3kno/
https://github.com/statnmap
https://github.com/MilesMcBain
https://twitter.com/dsolito
https://twitter.com/dsolito
https://github.com/matanhakim
https://github.com/skolenik
https://github.com/parmsam
https://github.com/chorgan182
https://github.com/MatousEibich
https://github.com/MatousEibich
https://github.com/jonathandmoore
https://github.com/AlainVagner
https://github.com/IZE85
https://github.com/IZE85
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« Package development with {fusen};

o Unit and assertive testing;

o Build automation with {targets};

e Reproducible environments with Docker;
« Continuous integration and delivery.

While this is not a book for beginners (you really should be fa-
miliar with R before reading this), I will not assume that you
have any knowledge of the tools presented in part 2. In fact,
even if you're already familiar with Git, Github, functional pro-
gramming and literate programming, I think that you will still
learn something useful from reading part 1. But be warned, this
book will require you to take the time to read it, and then type
on your computer. Type a lot.

I hope that you will enjoy reading this book and applying the
ideas in your day-to-day, ideas which hopefully should improve
the reliability, traceability and reproducibility of your code. You
can read this book for free on https://raps-with-r.dev/, or if
you want you can buy a DRM-free PDF or Epub over at https:
//leanpub.com /raps-with-r.

If you want to get to know me better, read my bio®.

If you have feedback, drop me an email at bruno [at] brodrigues
[dot] co.

Enjoy!

4https://www.brodrigues.co/about/me/
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1. Introduction

This book will not teach you about machine learning, statistics
or visualisation.

The goal is to teach you a set of tools, practices and project
management techniques that should make your projects easier
to reproduce, replicate and retrace. These tools and techniques
can be used right from the start of your project at a minimal
cost, such that once you're done with the analysis, you're also
done with making the project reproducible. Your projects are
going to be reproducible simply because they were engineered,
from the start, to be reproducible.

There are two main ideas in this book that you need to keep in
mind at all times:

« DRY: Don’t Repeat Yourself;
o« WIT: Write I'T down.

DRY WIT is not only the best type of humour, it is also the
best way to write reproducible analytical pipelines.

1.1. Who is this book for?

This book is for anyone that uses raw data to build any type of
output based on that raw data. This can be a simple quarterly

11
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report for example, in which the data is used for tables and
graphs, or a scientific article for a peer reviewed journal or even
an interactive web application. It doesn’t matter, because the
process is, at its core, always very similar:

Get the data;

Clean the data;

Write code to analyse the data;

Put the results into the final product.

This book will already assume some familiarity with program-
ming, and in particular the R programming language. However,
if you're comfortable with another programming language like
Python, you could still learn a lot from reading this book. The
tools presented in this book are specific to R, but there will al-
ways be an alternative for the language you prefer using, mean-
ing that you could apply the advice from this book to your needs
and preferences.

1.2. What is the aim of this book?

The aim of this book is to make the process of analysing data as
reliable, retraceable, and reproducible as possible, and do this
by design. This means that once you're done with the analysis,
you're done. You don’t want to spend time, which you often
don’t have anyways, to rewrite or refactor an analysis and make
it reproducible after the fact. We both know that this is not
going to happen. Once an analysis is done, it’s time to go to
the next analysis. And if you need to rerun an older analysis
(for example, because the data got updated), then you’ll simply
figure it out at that point, right? That’s a problem for future
you, right? Hopefully, future you will remember every quirk of

12
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your code and know which script to run at which point in the
process, which comments are outdated and can be safely ignored,
what features of the data need to be checked (and when they
need to be checked), and so on... You better hope future you is
a more diligent worker than youl!

Going forward, I'm going to refer to a project that is repro-
ducible as a “reproducible analytical pipeline”, or RAP for short.
There are only two ways to make such a RAP; either you are
lucky enough to have someone on the team whose job is to turn
your messy code into a RAP, or you do it yourself. And this
second option is very likely the most common. The issue is, as
stated above, that most of us simply don’t do it. We are always
in the rush to get to the results, and don’t think about mak-
ing the process reproducible. This is because we always think
that making the process reproducible takes time and this time
is better spent working on the analysis itself. But this is a mis-
conception, for two reasons.

The first reason is that employing the techniques that we are
going to discuss in this book won’t actually take much time. As
you will see, they’re not really things that you “add on top of the
analysis”, but will be part of the analysis itself, and they will also
help with managing the project. And some of these techniques
will even save you time (especially testing) and headaches.

The second reason is that an analysis is never, ever, a one-shot.
Only the most simple things, like pulling out a number from
some data base may be a one-shot. And even then, chances are
that once you provide that number, you'll be asked to pull out a
variation of that number (for example, by disaggregating by one
or several variables). Or maybe you'll get asked for an update
to that number in six months. So you will learn very quickly to
keep that SQL query in a script somewhere to make sure that
you provide a number that is consistent. But what about more

13
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complex analyses? Is keeping the script enough? Keeping the
script is already a good start of course. The problem is that
very often, there is no script, or not a script for each step of the
analysis.

I've seen this play out many times in many different organisa-
tions. It’s that time of the year again, we have to write a report.
10 people are involved, and just gathering the data is already
complicated. Some get their data from Word documents at-
tached to emails, some from a website, some from a report from
another department that is a PDF.. I remember a story that a
senior manager at my previous job used to tell us: once, a client
put out a call for a project that involved helping them setting
up a PDF scraper. They periodically needed data from another
department that came in PDFs. The manager asked what was,
at least from our perspective, an obvious question: why can’t
they send you the underlying data from that PDF in a machine
readable format? They had never thought to ask. So my man-
ager went to that department, and talked to the people putting
that PDF together. Their answer? “Well, we could send them
the data in any format they want, but they’ve asked us to send
the tables in a PDF format”.

So the first, and probably most important lesson here is: when
starting to build a RAP, make sure that you talk with all the
people involved.

1.3. Prerequisites

You should be comfortable with the R programming language.
This book will assume that you have been using R for some
projects already, and want to improve not only your knowledge
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of the language itself, but also how to successfully manage com-
plex projects. Ideally, you should know about packages, how to
install them, you should have written some functions already,
know about loops and have some basic knowledge of data struc-
tures like lists. While this is not a book on visualisation, we
will be making some graphs using the {ggplot2} package, so if
you're familiar with that, that’s good. If not, no worries, visu-
alisation, data munging or data analysis is not the point of this
book. Chapter 2, Before we start should help you gauge how
easily you will be able to follow this book.

Ideally, you should also not be afraid of not using Graphical User
Interfaces (GUIs). While you can follow along using an IDE like
RStudio, I will not be teaching any features from any program
with a GUI. This is not to make things harder than they should
be (quite the contrary actually) but because interacting graphi-
cally with a program is simply not reproducible. So our aim is
to write code that can be executed non-interactively by a ma-
chine. This is because one necessary condition for a workflow to
be reproducible and get referred to as a RAP, is for the workflow
to be able to be executed by a machine, automatically, without
any human intervention. This is the second lesson of building
RAPs: there should be no human intervention needed to get
the outputs once the RAP is started. If you achieve this, then
your workflow is likely reproducible, or can at least be made
reproducible much more easily than if it requires some special
manipulation by a human somewhere in the loop.

1.4. What actually is reproducibility?

A reproducible project means that this project can be rerun
by anyone at 0 (or very minimal) cost. But there are different
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levels of reproducibility, and I will discuss this in the next section.

Let’s first discuss some requirements that a project must have
to be considered a RAP.

1.4.1. Using open-source tools to build a RAP is
a hard requirement

Open source is a hard requirement for reproducibility.

No ifs nor buts. And I'm not only talking about the code
you typed for your research paper/report/analysis. I'm talk-
ing about the whole ecosystem that you used to type your code
and build the workflow.

Is your code open? That’s good. Or is it at least available to
other people from your organisation, in a way that they could
re-execute it if needed? Good.

But is it code written in a proprietary program, like STATA,
SAS or MATLAB? Then your project is not reproducible. It
doesn’t matter if this code is well documented and written and
available on a version control system (internally to your company
or open to the public). This project is just not reproducible.
Why?

Because on a long enough time horizon, there is no way to re-
execute your code with the exact same version of the proprietary
programming language and on the exact same version of the
operating system that was used at the time the project was
developed. As I'm writing these lines, MATLAB, for example,
is at version R2022b. And buying an older version may not
be simple. I'm sure if you contact their sales department they
might be able to sell you an older version. Maybe you can even
simply re-download older versions that you've already bought
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from their website. But maybe it’s not that simple. Or maybe
they won’t offer this option anymore in the future, who knows?
In any case, if you google “purchase old version of Matlab” you
will see that many researchers and engineers have this need.

Old version of matlab

4 views (last 30 days)

[ on29Nov201s 1 @ Link

Hallo after a few years we need to use again an old program written with matlab R12 6.0.0.88. We don't find the installation CD,
can we buy again this old version of the program? Thanks best regard

§3 0 Comments

Sign in to comment.

Sign in to answer this question.

&' Answers (1)

0 & Link

. 13 [ on 29 Nov 2018

Have you tried running the old program on a more recent release of MATLAB?

MATLAB 6.0 (R12) is eighteen years old (released in November 2000) and | think it highly unlikely you'll be able to get
it working on a new operating system. The Windows system requirements lists several Windows versions on which that
release was supported, the newest of which was Windows ME which was released in September 2000. Microsoft
ended mainstream support for this OS in 2003 and ended extended support in July 2006 according to Wikipedia.

€3 0 Comments

Sign in to comment.

Figure 1.1.: Wanting to run older versions of analytics software
is a recurrent need.

And if you’re running old code written for version, say, R2008a,
there’s no guarantee that it will produce the exact same results
on version 2022b. And let’s not even mention the toolboxes (if
you're not familiar with MATLAB’s toolboxes, they’re the equiv-
alent of packages or libraries in other programming languages).
These evolve as well, and there’s no guarantee that you can
purchase older versions of said toolboxes. And it’s likely that
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newer versions of toolboxes cannot even run on older versions of
Matlab.

And let me be clear, what I'm describing here with MATLAB
could also be said for any other proprietary programs still com-
monly (unfortunately) used in research and in statistics (like
STATA, SAS or SPSS). And even if some, or even all, of the
editors of these proprietary tools provide ways to buy and run
older versions of their software, my point is that the fact that you
have to rely on them for this is a barrier to reproducibility, and
there is no guarantee they will provide the option to purchase
older versions forever. Also, who guarantees that the editors of
these tools will be around forever? Or, and that’s more likely,
that they will keep offering a program that you install on your
machine instead of shifting to a subscription based model?

For just $199 a month, you can execute your SAS (or whatever)
scripts on the cloud! Worry about data confidentiality? No
worries, data gets encrypted and stored safely on our secure
servers! Run your analysis from anywhere and don’t worry about
losing your work if your cat knocks over your coffee on your
laptop! And if you purchase the pro licence, for an additional
$100 a month, you can even execute your code in parallel!

Think this is science fiction? Google “SAS cloud” to see SAS’s
cloud based offering.

1.4.2. There are hidden dependencies that can
hinder the reproducibility of a project

Then there’s another problem: let’s suppose you've written a
nice, thoroughly tested and documented workflow, and made
it available on Github (and let’s even assume that the data is
available for people to freely download, and that the paper is
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open access). Or, if you're working in the private sector, you
did everything above as well, the only difference being that the
workflow is only available to people inside the company instead
of being available freely and publicly online.

Let’s further assume that you’ve used R or Python, or any other
open source programming language. Could this study/analysis
be said to be reproducible? Well, if the analysis ran on a pro-
prietary operating system, then the conclusion is: your project
is not reproducible.

This is because the operating system the code runs on can
also influence the outputs that your pipeline builds. There are
some particularities in operating systems that may make certain
things work differently. Admittedly, this is in practice rarely a
problem, but it does happen!, especially if you're working with
very high precision floating point arithmetic like you would do
in the financial sector for instance.

Thankfully, there is no need to change operating systems to deal
with this issue, and we will learn how to use Docker to safeguard
against this problem.

1.4.3. The requirements of a RAP

So where does that leave us? Basically, for something to be truly
reproducible, it has to respect the following bullet points:

e Source code must obviously be available and thoroughly
tested and documented (which is why we will be using Git
and Github);

Thttps://github.com /numpy /numpy /issues/9187
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 All the dependencies must be easy to find and install (we
are going to deal with this using dependency management
tools);

o To be written with an open source programming language
(nocode tools like Excel are by default non-reproducible
because they can’t be used non-interactively, and which is
why we are going to use the R programming language);

o The project needs to be run on an open source operating
system (thankfully, we can deal with this without having
to install and learn to use a new operating system, thanks
to Docker);

« Data and the paper/report need obviously to be accessible
as well, if not publicly as is the case for research, then
within your company. This means that the concept of
“scripts and/or data available upon request” belongs in
the trash.

Availability of data and material

Data available upon reasonable request.

Figure 1.2.: A real sentence from a real paper published in THE
LANCET Regional Health. How about make the
data available and I won’t scratch your car, how’s
that for a reasonable request?

1.5. Are there different types of
reproducibility?

Let’s take one step back: we live in the real world, and in the real
world, there are some constraints that are outside of our control.
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These constraints can make it impossible to build a true RAP,
so sometimes we need to settle for something that might not be
a true RAP, but a second or even third best thing.

In what follows, let’s assume this: in the discussion below, code
is tested and documented, so let’s only discuss the code running
the pipeline itself.

The worst reproducible pipeline would be something that works,
but only on your machine. This can be simply due to the fact
that you hardcoded paths that only exist on your laptop. Any-
one wanting to rerun the pipeline would need to change the
paths. This is something that needs to be documented in a
README which we assumed was the case, so there’s that. But
maybe this pipeline only runs on your laptop because the com-
putational environment that you're using is hard to reproduce.
Maybe you use software, even if it’s open source software, that
is not easy to install (anyone that tried to install R packages
on Linux that depend on the {rJava} package know what I'm
talking about).

So a least worse pipeline would be one that could be run more
easily on any similar machine to yours. This could be achieved
by not using hardcoded absolute paths, and by providing instruc-
tions to set up the environment. For example, in the case of R,
this could be as simple as providing a script called something like
install_deps.R that would be a call to install.packages().
It could look like this:

install.packages(c("packagel",
"package2",
etc))

The issue here is that you need to make sure that the right ver-
sions of the packages get installed. If your script uses {ggplot2}
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version 2.2.1, then users should install this version as well, and
by running the script above, the latest version of {ggplot2} (as
of writing, version 3.4.0) will get installed. Maybe that’s not a
problem, but it can be if your script uses a function from ver-
sion 2.2.1 that is not available anymore in the latest version (or
maybe its name got changed, or maybe it was modified somehow
and doesn’t provide the exact same result). The more packages
the script uses (and the older it is), the higher the likelihood that
some package version will not be compatible. There is also the
issue of the R version itself. Generally speaking, recent versions
of R seem to not be too bad when it comes to running older
code written in R. I know this because in 2022 I've run every
example that comes bundled with R since version 0.6.0 on the
then current version (as of writing) of R, version 4.2.2.
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Here is the result of this experiment:
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version

which_cnd . error . warning . message . OK!

Figure 1.3.: Examples from older versions of R run most of the
time successfully on the current version of R

This graph shows the following: for each version of R, starting
with R version 0.6.0 (released in 1997), how well the examples
that came with a standard installation of R run on the current
version of R (version 4.2.2 as of writing). These are the examples
from the default packages like {base}, {stats}, {stats4}, and
so on. Turns out that more than 75% of the example code from
version 0.6.0 still work on the current version of R. A small
fraction output a message (which doesn’t mean the code doesn’t
work), some 5% raise a warning, which again doesn’t necessarily
mean that the code doesn’t work, and finally around 20% or so
produce errors. As you can see, the closer we get to the current
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release, the fewer errors get raised (if you want to run the code
for yourself, check out this Github repository?).

(But something important should be noted: just because some
old piece of code runs without error, doesn’t mean that the
result is exactly the same. There might be cases where the same
function returns different results on different versions of R.)

While this is evidence of R itself being quite stable through time,
there are studies that show a less rosy picture. In a recent study
(Trisovic et al. (2022) 3), some researchers tried to rerun up to
9000 R scripts downloaded from the Harvard Dataverse. There
were several issues when trying to rerun the scripts, which lead
to, and I quote the paper here, “[...] 74% of R files [failing] to
complete without error in the initial execution, while 56% failed
when code cleaning was applied, showing that many errors can
be prevented with good coding practices”.

The take-away message is that counting on the language itself
being stable through time as a sufficient condition for repro-
ducibility is not enough. We have to set up the code in a way
that it actually is reproducible.

So what does this all mean? This means that reproducibility is
on a continuum, and depending on the constraints you face your
project can be “not very reproducible” to “totally reproducible”.
Let’s consider the following list of anything that can influence
how reproducible your project truly is:

» Version of the programming language used;

« Versions of the packages/libraries of said programming lan-
guage used;

o Operating System, and its version;

2https://github.com/b-rodrigues/code_ longevity
3https://www.nature.com/articles/s41597-022-01143-6
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o Versions of the underlying system libraries (which often go
hand in hand with OS version, but not necessarily).

e And even the hardware architecture that you run all that
software stack on.

So by “reproducibility is on a continuum”, what I mean is that
you could set up your project in a way that none, one, two, three,
four or all of the preceding items are taken into consideration
when making your project reproducible.

This is not a novel, or new idea. Peng (2011) already discussed
this concept but named it the reproducibility spectrum. In part
2 of this book, I will reintroduce the idea and call it the “repro-
ducibility iceberg”.

Reproducibility Spectrum
Publication +

Publication Linked and Full

only Code Code e — replication

and data code and data

Not reproducible Gold standard

Figure 1.4.: The reproducibility spectrum from Peng’s 2011 pa-
per.

Let me just finish this introduction by discussing the last item
on the previous list: hardware architecture. You see, Apple has
changed the hardware architecture of their computers recently.
Their new computers don’t use Intel based hardware anymore,
but instead Apple’s own proprietary architecture (Apple Silicon)
based on the ARM specification. And what does that mean con-
cretely? It means that all the binary packages that were built for
Intel based Apple computers cannot run on their new computers
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(at least not without a compatibility layer). Which means that
if you have a recent M1 or M2 Macbook and need to install old
CRAN packages to rerun a project (and we will learn how to
do this later in the book), these need to be compiled to work
on Apple Silicon first. You cannot even install older versions of
R, unless you also compile those from source! Now I have read
about a compatibility layer called Rosetta which enables to run
binaries compiled for the Intel architecture on the ARM archi-
tecture, and maybe this works well with R and CRAN binaries
compiled for Intel architecture. Maybe, I don’t know. But my
point is that you never know what might come in the future, and
thus needing to be able to compile from source is important, be-
cause compiling from source is what requires the least amount of
dependencies that are outside of your control. Relying on bina-
ries is not future-proof (and which is again, another reason why
open-source tools are a hard requirement for reproducibility).

And for you Windows users, don’t think that the preceding para-
graph does not concern you. I think that it is very likely that
Microsoft will push in the future for OEM manufacturers to
build more ARM based computers. There is already an ARM
version of Windows after all, and it has been around for quite
some time, and I think that Microsoft will not kill that version
any time in the future. This is because ARM is much more
energy efficient than other architectures, and any manufacturer
can build its own ARM cpus by purchasing a license, which can
be quite interesting from a business perspective. For example in
the case of Apple Silicon cpus, Apple can now get exactly the
cpus they want for their machines and make their software work
seamlessly with it (also, further locking in their users to their
hardware). I doubt that others will pass the chance to do the
same.

Also, something else that might happen is that we might move
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towards more and more cloud based computing, but I think that
this scenario is less likely than the one from before. But who
knows. And in that case it is quite likely that the actual code
will be running on Linux servers that will likely be ARM based
because of energy and licensing costs. Here again, if you want
to run your historical code, you'll have to compile old packages
and R versions from source.

Ok, so this might seem all incredibly complicated. How on earth
are we supposed to manage all these risks and balance the im-
mediate need for results with the future need of rerunning an
old project? And what if rerunning this old project is not even
needed in the future?

This is where this book will help you. By employing the tech-
niques discussed in this book, not only will it be very easy and
quick to set up a project from the ground up that is truly repro-
ducible, the very fact of building the project this way will also
ensure that you avoid mistakes and producing results that are
wrong. It will be easier and faster to iterate and improve your
code, to collaborate, and ultimately to trust the results of your
pipelines. So even if no one will rerun that code ever again, you
will still benefit from the best practices presented in this book.
Let’s dive in!
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Part 1: Don’t Repeat
Yourself

29






Introduction

The first idea we are going to focus on is Don’t Repeat Yourself.
Simply by avoiding having to repeat yourself, you will naturally
implement best practices to make your pipelines reproducible.

Introduction

Part 1 will focus on teaching you the fundamental ingredients
to reproducibility. By fundamental ingredients I mean those
tools that you absolutely need to have in your toolbox before
even attempting to make a project reproducible. These tools
are so important that a good chunk of this book is dedicated to
them:

o Version control;
o Functional programming;
o Literate programming.

You might already be familiar with these topics, and maybe
already use them in your day to day. If that’s the case, you still
might want to at least skim part 1 before tackling part 2 of the
book, which will focus on another set of tools to actually build
reproducible analytical pipelines (RAPs).

So this means that part 1 will not teach you how to build re-
producible pipelines. But I cannot immediately start teaching
you how to build reproducible analytical pipelines without first
making sure that you understand the core concepts laid out
above. To help you understand these concepts, we will start
by analysing some data together. We are going to download,
clean and plot some data, and we will achieve this by writing
two scripts. These scripts will be written in a very typical non-
“software engineery” way, as to mimic how analysts, data sci-
entists or researchers without any formal training in computer
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science would perform such an analysis. This does not mean
that the quality of the analysis will be low. But it means that,
typically, these programmers have delievering results fast, and
by any means necessary, as their top priority. My goal with this
book is to show you, and hopefully convince you, that by adopt-
ing certain simple ideas from software engineering it is possible
to deliver just as fast as before, but in a more consistent and
robust way.
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This is not an introductory book, so before tackling the topics
presented here, make sure that you are familiar with the different
topics presented below. If you read this chapter and everything
is obvious or known to you, then you should have no trouble
following along. If instead what you read here is cryptic, then
take some time to improve your understanding of these topics
first.

2.1. Essential knowledge

It’s important to know the parts that constitute R. Let’s make
something clear: R is not RStudio, or whatever interface you are
using to interact with R. R is a domain-specific interpreted pro-
gramming language. R is domain-specific because its primary
use is in performing statistics. Interpreted, because results get
returned immediately when you execute a script in the console.
In other words, when you write 1+1 in the console, you get back
2 immediately. There are programming languages, called com-
piled programming languages, that require code to be compiled
into binaries before execution. C is such a language. The fact
that R is interpreted makes interactive exploratory data anal-
ysis easy, but also introduces certain negative aspects. I will
discuss these in detail in the book. R’s console is an example of
a REPL — Read-FEval-Print-Loop — environment. Code gets read,
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evaluated, printed and the read state gets returned, starting the
loop over.

To make working with R easier, you should not write code in the
console and execute it, but instead write it in a text file. You can
keep these text files, update and share them with collaborators.
Such text files are called scripts. You could write these scripts
using the most basic text editor included in your operating sys-
tem (that would be Notepad.exe on Windows for example), but
you should instead use a text editor made specifically to make
programming easier. Popular choices among R users include
RStudio, Visual Studio Code, or maybe something more exotic
like Emacs combined with ESS (my personal choice). Whatever
text editor you choose, take time to configure it and learn how
to use it. You will spend many, many, many hours inside that
text editor. The code you write in that text editor is what’s go-
ing to feed you and your family. Learn your chosen text editor’s
keyboard shortcuts and other advanced features. This initial in-
vestment will pay for itself many times over. Also, you need to
know what an actual text file is. A document written in Word
(with the .docx extension) is not a text file. It looks like text,
but is not. The .docx format is a much more complex format
with many layers of abstraction. “True” plain text files can be
opened with the simplest text editor included in your operating
system. ['ve had students trying to create text files with word
processors like MS Word and then being confused when things
would not work.

As stated before, R is a domain-specific programming language
mainly used for doing statistics, or whatever modernized term
you may prefer like “data science”. Its base capabilities can
be extended by installing packages. For example, a base in-
stallation of R provides you with useful functions like mean ()
or sd(), to compute the average or standard deviation of a
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vector of numbers, or rnorm() to compute random variates
from a Gaussian (Normal) distribution. However, there is no
function available to train a random forest. If you need to
train a random forest you need to install a package using the
install.packages("randomForest") command. This installs
the {randomForest} package (in the rest of the book, I will
surround package names with curly braces). The collection of
packages installed is called a “library”. Packages get downloaded
from CRAN, the Comprehensive R Archive Network. There is
no doubt in my mind that the reason R became so popular is
because it is quite easy to write packages for it; and this is
something that we will learn as well! Some packages are writ-
ten with other programming languages, very often Fortran or
C++. The code included in these packages is then compiled
and can be executed by R using a user-facing function. For ex-
ample, if you dig into the source code of the {randomForest}
package, you will find C and Fortran code. This is important
to know, because sometimes R packages need to be compiled by
install.packages(), and this compilation can sometimes fail
(especially on Linux, but more on that later in the book).

When you use R, you will load data sets, create plots, train
models, etc. These data sets, plots, models, are all objects and
they get saved in the global environment. To see a list of objects
currently available in the global environment, type 1s() in the R
console. When you quit R, you get asked to save the workspace:
this will save the current state of the global environment and
load it next time you start R. I highly recommend for you to
not save the workspace. If you are using RStudio you can change
this behaviour in the global options (under Workspace, set Save
workspace to .RData on exit to Never). Other editors might
have a similar option. Saving and loading the workspace makes
it impossible to start with a fresh R session (unless you start
R with the --vanilla flag), which can cause issues that are
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difficult to pinpoint.

You should also be comfortable with paths and your computer’s
file system. Comfortable means having no problems finding
where a file gets downloaded for example, or being able to navi-
gate to any folder, either through a GUI file browser or through
a terminal (if you're familiar with navigating your computer us-
ing the terminal, you will have an easier time with this book
than if you didn’t). I also highly recommend that you strive to
use relative paths in your scripts, and not absolute paths. In
other words: don’t start your scripts with a line such as:

setwd ("H: /Username/Projects/housing regression/")

but instead, use “Projects” if you're using RStudio, or similar
features from your preferred IDE. This way, you can use relative
paths instead. This makes collaboration much easier. Using
“Projects” in RStudio, if you need to load data, you can simply
write:

dataset <- read.csv("data.csv")

and don’t need to set working directories using setwd (), which
obviously will not exist on your collaborators computer.

There is also the {here} package that makes using relative paths
easier, but I won’t discuss it in this book. If you're interested
you can read this post!.

You should be familiar with writing functions. This book has a
whole chapter on functional programming, and I will teach you
how to write functions, but if you're already familiar with this,
then it will make going through that chapter easier.

Thttps://github.com/jennybc/here_here
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Finally, you should know how to ask for help. If you need help
with this book, feel free to open an issue on the book’s Github
repo here?, or open a thread on the book’s Leanpub forum (if you
bought a copy) over here®. Just like for this book, if you have an
issue with an R package, look for its repository: many packages’
source code is hosted on Github (but not always). You can also
try to reach out to the author, or open a thread on Stackoverflow.
Whatever you do, make sure that you do your homework first:

e Read the documentation. Maybe you're using the tool

wrong.

Take note of the error message. Error messages can be
cryptic sometimes, but as you gain in experience, you will
learn to decrypt them.

o Write down the simplest script possible that reproduces

the issue you're facing. This is called an MRE, “Minimal
Reproducible Example”. If you need to open a thread
asking for help, post this MRE, this will make helping you
much easier. For general advice on how to write an MRE,

you can read this classic blog post?.

Finally, keep in mind the following saying from my father, a

mason (the ones that lay bricks, not the ones meeting in secrecy

to govern the world):

The tools are always right. If you're using a tool
and it’s not behaving as expected, it is much more
likely that your expectations are wrong. Take this
opportunity to review your knowledge of the tool.

2https://github.com /b-rodrigues /rap4all
3https://community.leanpub.com/c/raps-with-r/
4https://jonskeet.uk/csharp/complete.html
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3. Project start

In this chapter, we are going to work together on a very simple
project. This project will stay with us until the end of the book.
As we will go deeper into the book together, you will rewrite that
project by implementing the techniques I will teach you. By the
end of the book you will have built a reproducible analytical
pipeline. To get things going, we are going to keep it simple;
our goal here is to get an analysis done, that’s it. We won'’t
focus on reproducibility. We are going to download some data,
and analyse it, that’s it.

3.1. Housing in Luxembourg

We are going to download data about house prices in Luxem-
bourg. Luxembourg is a little Western European country the
author hails from that looks like a shoe and is about the size
of .98 Rhode Islands. Did you know that Luxembourg is a con-
stitutional monarchy, and not a kingdom like Belgium, but a
Grand-Duchy, and actually the last Grand-Duchy in the World?
Also, what you should know to understand what we will be do-
ing is that the country of Luxembourg is divided into Cantons,
and each Cantons into Communes. If Luxembourg was the USA,
Cantons would be States and Communes would be Counties (or
Parishes or Boroughs). What’s confusing is that “Luxembourg”
is also the name of a Canton, and of a Commune, which also has

39



3. Project start

the status of a city and is the capital of the country. So Lux-
embourg the country, is divided into Cantons, one of which is
called Luxembourg as well, cantons are divided into communes,
and inside the canton of Luxembourg, there’s the commune of
Luxembourg which is also the city of Luxembourg, sometimes
called Luxembourg City, which is the capital of the country.

Figure 3.1.: Luxembourg is about as big as the US State of
Rhode Island.

What you should also know is that the population is about
645,000 as of writing (January 2023), half of which are foreign-
ers. Around 400,000 persons work in Luxembourg, of which half
do not live in Luxembourg; so every morning from Monday to
Friday, 200,000 people enter the country to work and then leave
in the evening to go back to either Belgium, France or Germany,
the neighbouring countries. As you can imagine, this puts enor-
mous pressure on the transportation system and on the roads,
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but also on the housing market; everyone wants to live in Luxem-
bourg to avoid the horrible daily commute, and everyone wants
to live either in the capital city, or in the second largest urban
area in the south, in a city called Esch-sur-Alzette.

The plot below shows the value of the House Price Index over

time for Luxembourg and the European Union:

House price and sales index (2010 = 100)

210

[y
o]
o

| 150

OBS_VALUE

120

90

2010 2015 2020
TIME_PERIOD
geo EU == LU

Source: Eurostat

If you want to download the data, click here!.

Let us paste the definition of the HPI in here (taken from the
HPT’s metadata® page):

The House Price Index (HPI) measures inflation in the residen-
tial property market. The HPI captures price changes of all types
of dwellings purchased by households (flats, detached houses, ter-
raced houses, etc.). Only transacted dwellings are considered,

Thttps://is.gd/AETOir
Zhttps://archive.is/OrQwA, archived link for posterity.
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self-build dwellings are excluded. The land component of the
dwelling is included.

So from the plot, we can see that the price of dwellings more
than doubled between 2010 and 2021; the value of the index is
214.81 in 2021 for Luxembourg, and 138.92 for the European
Union as a whole.

There is a lot of heterogeneity though; the capital and the com-
munes right next to the capital are much more expensive than
communes from the less densely populated north, for example.
The south of the country is also more expensive than the north,
but not as much as the capital and surrounding communes. Not
only is price driven by demand, but also by scarcity; in 2021,
0.5% of residents owned 50% of the buildable land for housing
purposes (Source: Observatoire de I’Habitat, Note 29, archived
download link?).

Our project will be quite simple; we are going to download some
data, supplied as an Excel file, compiled by the Housing Obser-
vatory (Observatoire de ’Habitat, a service from the Ministry
of Housing, which monitors the evolution of prices in the hous-
ing market, among other useful services like the identification
of vacant lots). The advantage of their data when compared to
Eurostat’s data is that the data is disaggregated by commune.
The disadvantage is that they only supply nominal prices, and
no index (and the data is trapped inside Excel and not ready for
analysis with R). Nominal prices are the prices that you read on
price tags in shops. The problem with nominal prices is that it
is difficult to compare them through time. Ask yourself the fol-
lowing question: would you prefer to have had 500€ (or USDs)
in 2003 or in 20237 You probably would have preferred them in
2003, as you could purchase a lot more with $500 then than now.

3https://archive.org/download /note-29 /note-29.pdf
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In fact, according to a random inflation calculator I googled, to
match the purchasing power of $500 in 2003, you’d need to have
$793 in 2023 (and I'd say that we find very similar values for €).
But it doesn’t really matter if that calculation is 100% correct:
what matters is that the value of money changes, and compar-
isons through time are difficult, hence why an index is quite
useful. So we are going to convert these nominal prices to real
prices. Real prices take inflation into account and so allow us to
compare prices through time.

So to summarise; our goal is to:

o Get data trapped inside an Excel file into a neat data
frame;

o Convert nominal to real prices using a simple method;

» Make some tables and plots and call it a day (for now).

We are going to start in the most basic way possible; we are sim-
ply going to write a script and deal with each step separately.
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3.2. Saving trapped data from Excel

Getting data from Excel into a tidy data frame can be very
tricky. This is because very often, Excel is used as some kind
of dashboard or presentation tool. So data is made human-
readable, in contrast to machine-readable. Let us quickly dis-
cuss this topic as it is essential to grasp the difference between
the two (and in our experience, a lot of collective pain inflicted
to statisticians and researchers could have been avoided if this
concept was more well-known). The picture below shows an
Excel file made for human consumption:

E vente-maison-2010-2021 EIEY @ =
File Edit View Insert Format Data Tools Help Last edit was seconds ago
o @ B OT00% v $ % .0 00 123 Defatt(Ca. v 10 - B I & A & H =+ 1~ |7~
Al -
A B c D E F G H

1

2 S

3 WxtMsOURG

4 o |

5 = K -

. . < .

& Offres et prix annoncés pour la vente de maisons en 2010

7

g Précaution de lecture

g - les prix ne sont pas affichés pour les communes oftle nombre d'annances est inférieur 3 30 pour des raisons de représentativité
statistique (***)

10 - les prix sont présentés ici en euros courants, c'est-3-dire sans tenir compte de l'inflation.

1

5 Commune Nombre d'offres Prix moyen annoncé Prix mzuyen annoncé au

en € courant m* en € courant

13 Bascharage 192 593,698 3,604

14 Beaufort 266 461,160 2,903

135 Bech 65 621,760 3,281

LS Beckerich 176 444,499 2,868

17 Berdorf 111 504,041 3,056

18 Bertrange 264 795,339 4,266

9 Bettembourg 304 555,628 3,343

20 Bettendorf 94 495,074 3,235

21 Betzdorf 119 625,914 3,343

22 Bissen 70 516,466 3,322

Figure 3.2.: An Excel file meant for human eyes.

So why is this file not machine-readable? Here are some issues:
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o The table does not start in the top-left corner of the spread-
sheet, which is where most importing tools expect it to be;

o The spreadsheet starts with a header that contains an im-
age and some text;

o Numbers are text and use “,” as the thousands separator;

e You don’t see it in the screenshot, but each year is in a
separate sheet.

That being said, this Excel file is still very tame, and going
from this Excel to a tidy data frame will not be too difficult.
In fact, we suspect that whoever made this Excel file is well
aware of the contradicting requirements of human and machine-
readable formatting of data, and strove to find a compromise.
Because more often than not, getting human-readable data into
a machine-readable format is a nightmare. We could call data
like this machine-friendly data.

If you want to follow along, you can download the Excel file here*
(downloaded on January 2023 from the luxembourguish open
data portal®). But you don’t need to follow along with code,
because I will link the completed scripts for you to download
later.

Each sheet contains a dataset with the following columns:

o Commune: the commune (the smallest administrative di-
vision of territory);

o Nombre d’offres: the total number of selling offers;

e Prix moyen annoncé en Euros courants: Average selling
price in nominal Euros;

o Priz moyen annoncé au m2 en Euros courants: Average
selling price in square meters in nominal Euros.

4https://is.gd/1vvBAc
Shttps://data.public.lu/en/datasets/prix-annonces-des-logements-par-
commune/
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For ease of presentation, I'm going to show you each step of the
analysis here separately, but I'll be putting everything together
in a single script once I'm done explaining each step. So first,
let’s load some packages:

library(dplyr)
library(purrr)
library(readxl)
library(stringr)
library(janitor)

Even though this book is not about analysing data per se, let me
just briefly explain what these packages do, in case you’re not
familiar with them. The {dplyr} package provides many func-
tions for data manipulation, for example aggregating group-wise.
{purrr} is a package for functional programming, a program-
ming paradigm that I'll introduce later in the book, {readx1}
reads in Excel workbooks, {stringr} is a package for manipu-
lating strings, and finally {janitor} (Firke 2023) provides some
very nice functions, to perform some common tasks like easily
rename every column of a data frame in snake case.

Next, the code below downloads the data, and puts it in a data
frame:

# The url below points to an Excel file
# hosted on the book’s github repository
url <- "https://is.gd/1vvBAc"

raw_data <- tempfile(fileext = ".xlsx")

download.file(url, raw_data,
method = "auto",
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mode = "wb")
sheets <- excel sheets(raw_data)

read clean <- function(..., sheet){
read_excel(..., sheet = sheet) [>
mutate(year = sheet)

raw_data <- map(
sheets,
~read_clean(raw_data,
skip = 10,
sheet = .)
) >
bind rows() |>
clean names()

raw_data <- raw_data [>

rename (
locality = commune,
n_offers = nombre_doffres,

average_price_nominal_euros =
<~ Pprix_moyen_annonce_en_courant,
average price _m2 nominal_euros =
< prix_moyen_annonce_au_m2_en_courant,
average _price_m2_nominal_euros =
< prix_moyen_annonce_au _m2_en_courant
) 1>
mutate(locality = str_trim(locality)) [>
select(year, locality, n_offers,
o starts_with("average"))
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If you are familiar with the {tidyverse} (Wickham et al. 2019)
the above code should be quite easy to follow. We start by
downloading the raw Excel file and saving the sheet names into
a variable. We then use a function called read_clean(), which
takes the path to the Excel file and the sheet names as an ar-
gument to read the required sheet into a data frame. We use
skip = 10 to skip the first 10 lines in each Excel sheet because
the first 10 lines contain a header. The last thing this function
does is add a new column called year which contains the year
of the data. We're lucky because the sheet names are the years:
“20107, “2011” and so on. We then map this function to the list
of sheet names, thus reading in all the data from all the sheets
into one list of data frames. We then use bind_rows (), to bind
each data frame into a single data frame, by row. Finally, we
rename the columns (by translating their names from French
to English) and only select the required columns. If you don’t
understand each step of what is going on, don’t worry too much
about it; this book is not about learning how to use R.

Running this code results in a neat data set:

raw_data

# A tibble: 1,343 x 5

year locality n_offers
average price_nominal_euros
<chr> <chr> <dbl> <chr>
1 2010 Bascharage 192 593698.31000000006
2 2010 Beaufort 266 461160.29
3 2010 Bech 65 621760.22
4 2010 Beckerich 176 444498.68
5 2010 Berdorf 111 504040.85
6 2010 Bertrange 264 795338.87
7 2010 Bettembourg 304 555628.29
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8 2010 Bettendorf 94 495074.38
9 2010 Betzdorf 119 625914 .47
10 2010 Bissen 70 516465.57

# i 1,333 more rows
# 1 1 more variable: average price_m2 nominal_euros
<chr>

But there’s a problem: columns that should be of type numeric
are of type character instead (average price_nominal_euros
and average_price_m2_nominal_euros). There’s also another
issue, which you would eventually catch as you’ll explore the
data: the naming of the communes is not consistent. Let’s take
a look:

raw_data |>
filter(grepl("Luxembourg", locality)) |[>
count (locality)

# A tibble: 2 x 2

locality n
<chr> <int>
1 Luxembourg 9
2 Luxembourg-Ville 2

We can see that the city of Luxembourg is spelled in two different
ways. It’s the same with another commune, Pétange:

raw_data |>

filter(grepl("P.tange", locality)) |[>
count (locality)

# A tibble: 2 x 2
locality n
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<chr> <int>
1 Petange 9
2 Pétange 2

WA

So sometimes it is spelled correctly, with an “é”, sometimes not.
Let’s write some code to correct both these issues:

raw_data <- raw_data [>
mutate (
locality = ifelse(grepl("Luxembourg-Ville",
< locality),
"Luxembourg",
locality),
locality = ifelse(grepl("P.tange",
- locality),
"Pétange",
locality)
) 1>
mutate(across(starts_with("average"),
as.numeric))

Warning: There were 2 warnings in “mutate() .

The first warning was:

i In argument: “across(starts_with("average"),
as.numeric) ~.

Caused by warning:

! NAs introduced by coercion

i Run “dplyr::last_dplyr_warnings()~ to see the 1

remaining
warning.

Now this is interesting — converting the average columns to
numeric resulted in some NA values. Let’s see what happened:
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3.2. Saving trapped data from Excel

raw_data |>
filter(is.na(average_price_nominal_euros))

# A tibble: 290 x 5

year locality n_offers
average _price_nomina-~1
<chr> <chr> <dbl>
<dbl>
1 2010 Consthum 29
NA
2 2010 Esch-sur-Sire 7
NA
3 2010 Heiderscheid 29
NA
4 2010 Hoscheid 26
NA
5 2010 Saeul 14
NA
6 2010 <NA> NA
NA
7 2010 <NA> NA
NA
8 2010 Total d'offres 19278
NA
9 2010 <NA> NA
NA
10 2010 Source : Ministére~ NA

NA
# 1 280 more rows
# 1 abbreviated name: 1: average price_nominal_euros

# i 1 more variable: average_price_m2 nominal_euros
<dbl>
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It turns out that there are no prices for certain communes, but
that we also have some rows with garbage in there. Let’s go
back to the raw data to see what this is about:

Commune = Nombre d'offres = Prix moyen annoncé Prix m:)yen annoncé _
en € courant au m? en € courant

Consthum 29 * *

Esch-sur-Sire 7 * *

Heiderscheid 29 * *

Hoscheid 26 * *

Saeul 14 * *

|Moyenne nationale | | 569,216 3,251
|Tota| d'offres | 19,278|

Source : Ministére du Logement - Observatoire de I'Habitat (base prix 2010).

Figure 3.3.: Always look at your data.

So it turns out that there are some rows that we need to re-
move. We can start by removing rows where locality is miss-
ing. Then we have a row where locality is equal to “Total
d’offres”.  This is simply the total of every offer from every
commune. We could keep that in a separate data frame, or
even remove it. The very last row states the source of the
data and we can also remove it. Finally, in the screenshot
above, we see another row that we don’t see in our filtered
data frame: one where n_offers is missing. This row gives the
national average for columns average prince_nominal_euros
and average_price_m2 _nominal euros. What we are going to
do is create two datasets: one with data on communes, and the
other on national prices. Let’s first remove the rows stating the
sources:
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raw_data <- raw_data |>
filter(!grepl("Source", locality))

Let’s now only keep the communes in our data:

commune level data <- raw_data |>
filter(!grepl("nationale|offres", locality),
lis.na(locality))

And let’s create a dataset with the national data as well:

country_level <- raw_data |>
filter(grepl("nationale", locality)) [>
select(-n_offers)

offers_country <- raw_data |>
filter(grepl("Total d.offres", locality)) [>
select(year, n_offers)

country_level data <- full join(country level,

- offers_country) |[>
select(year, locality, n_offers, everything())
s >
mutate(locality = "Grand-Duchy of Luxembourg")

Joining with “by = join_by(year)"

Now the data looks clean, and we can start the actual analysis...
or can we? Before proceeding, it would be nice to make sure
that we got every commune in there. For this, we need a list of
communes from Luxembourg. Thankfully, Wikipedia has such
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a listS.

An issue with scraping tables off the web is that they might
change in the future. It is therefore a good idea to save the
page by right clicking on it and then selecting save as, and then
re-hosting it. I use Github pages to re-host the Wikipedia page
above here’. 1 now have full control of this page, and won’t
get any bad surprises if someone decides to eventually update it.
Instead of re-hosting it, you could simply save it as any other
file of your project.

So let’s scrape and save this list:

current_communes <- "https://is.gd/lux_communes"
o >

rvest::read html() |[>

rvest: :html table() [>

purrr: :pluck(2) |[>

janitor::clean names() |[>

dplyr::filter(name_2 != "Name") |>

dplyr: :rename (commune

dplyr: :mutate(commune
- stringr::str_remove(commune, " .$"))

name 2) |>

We scrape the table from the re-hosted Wikipedia page using
{rvest}. rvest::html table() returns a list of tables from
the Wikipedia table, and then we use purrr: :pluck() to keep
the second table from the website, which is what we need (I made
the calls to the packages explicit, because you might not be famil-
iar with these packages). janitor::clean_names() transforms
column names written for human eyes into machine-friendly
names (for example Growth rate in % would be transformed

Shttps://w.wiki/6nPu
Thttps://is.gd/lux_ communes
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to growth_rate_in_percent) and then I use the {dplyr} pack-
age for some further cleaning and renaming; the very last step
removes a dagger symbol next to certain communes names, in
other words it turns “Commune 1”7 into “Commune”.

Let’s see if we have all the communes in our data:

setdiff (unique (commune level data$locality),
current communes$commune)

[1] "Bascharage" "Boevange-sur-Attert"
[3] "Burmerange" "Clémency"

[5] "Consthum" "Ermsdorf"

[7] "Erpeldange" "Eschweiler"
[9] "Heiderscheid" "Heinerscheid"
[11] "Hobscheid" "Hoscheid"

[13] "Hosingen" "Luxembourg"
[15] "Medernach" "Mompach"

[17] "Munshausen" "Neunhausen"
[19] "Rosport" "Septfontaines"
[21] "Tuntange" "Wellenstein"

[23] "Kaerjeng"

We see many communes that are in our commune level data,
but not in current_communes. There’s one obvious reason: dif-
ferences in spelling, for example, “Kaerjeng” in our data, but
“Kéerjeng” in the table from Wikipedia. But there’s also a less
obvious reason; since 2010, several communes have merged into
new ones. So there are communes that are in our data in 2010
and 2011, but disappear from 2012 onwards. So we need to do
several things: first, get a list of all existing communes from
2010 onwards, and then, harmonise spelling. Here again, we can
use a list from Wikipedia, and here again, I decide to re-host it
on Github pages to avoid problems in the future:
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former_communes <-

< "https://is.gd/lux_former_communes" |>
rvest::read html() |[>
rvest::html table() [>
purrr: :pluck(3) |[>
janitor::clean_names() |>
dplyr::filter(year_dissolved > 2009)

former communes

# A tibble: 20 x 3

name year_dissolved reason
<chr> <int> <chr>

1 Bascharage 2011 merged to form
Kaerje~

2 Boevange-sur—-Attert 2018 merged to form
Helper~

3 Burmerange 2011 merged into
Schengen

4 Clemency 2011 merged to form
Kaerje~

5 Consthum 2011 merged to form
Parc H~

6 Ermsdorf 2011 merged to form
Vallée~

7 Eschweiler 2015 merged into
Wiltz

8 Heiderscheid 2011 merged into
Esch-sur-~

9 Heinerscheid 2011 merged into
Clervaux

10 Hobscheid 2018 merged to form
Habscht
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11 Hoscheid
Parc H~

12 Hosingen
Parc H~

13 Mompach
Rospor~

14 Medernach
Vallée~

15 Munshausen
Clervaux

16 Neunhausen
Esch-sur-~

17 Rosport
Rospor-~

18 Septfontaines

Habscht

19 Tuntange
Helper~

20 Wellenstein
Schengen

3.2. Saving trapped data from Excel

2011

2011

2018

2011

2011

2011

2018

2018

2018

2011

merged
merged
merged
merged
merged
merged
merged
merged
merged

merged

to form

to form

to form

to form

into

into

to form

to form

to form

into

As you can see, since 2010 many communes have merged to form
new ones. We can now combine the list of current and former

communes, as well as harmonise their names:

communes <- unique(c(former_communes$name,
current communes$commune) )
# we need to rename some communes

# Different spelling of these communes between
-~ wikipedia and the data
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communes [which(communes == "Clemency")] <-
- "Clémency"
communes [which(communes == "Redange")] <-

- "Redange-sur-Attert"
communes [which(communes ==
- "Erpeldange-sur-Stire")] <- "Erpeldange"

communes [which(communes == "Luxembourg City")]
- <= "Luxembourg"

communes [which(communes == "Kéderjeng")] <-

» "Kaerjeng"

communes [which(communes == "Petange")] <-

- "Pétange"
Let’s run our test again:

setdiff (unique (commune level data$locality),
communes)

character(0)

Great! When we compare the communes that are in our data
with every commune that has existed since 2010, we don’t have
any commune that is unaccounted for. So are we done with
cleaning the data? Yes, we can now start with analysing the
data. Take a look here® to see the finalised script. Also read
some of the comments that I've added. This is a typical R script,
and at first glance, one might wonder what is wrong with it.
Actually, not much, but the problem if you leave this script as it
is, is that it is very likely that we will have problems rerunning
it in the future. As it turns out, this script is not reproducible.
But we will discuss this in much more detail later on. For now,
let’s analyse our cleaned data.

8https://is.gd/7TPhUjd
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We are now going to analyse the data. The first thing we are
going to do is compute a Laspeyeres price index. This price
index allows us to make comparisons through time; for exam-
ple, the index at year 2012 measures how much more expensive
(or cheaper) housing became relative to the base year (2010).
However, since we only have one ‘good’ (housing), this index
becomes quite simple to compute: it is nothing but the prices at
year t divided by the prices in 2010 (if we had a basket of goods,
we would need to use the Laspeyeres index formula to compute
the index at all periods).

For this section, I will perform a rather simple analysis. I will
immediately show you the R script: take a look at it here®. For
the analysis I selected 5 communes and plotted the evolution of
prices compared to the national average.

This analysis might seem trivially simple, but it contains all the
needed ingredients to illustrate everything else that I'm going
to teach you in this book.

Most analyses would stop here: after all, we have what we need;
our goal was to get the plots for the 5 communes of Luxembourg,
Esch-sur-Alzette, Mamer, Schengen (which gave its name to the
Schengen Area!?) and Wincrange. However, let’s ask ourselves
the following important questions:

o How easy would it be for someone else to rerun the analy-
sis?

o How easy would it be to update the analysis once new data
gets published?

o How easy would it be to reuse this code for other projects?

Yhttps://is.gd/qCJIEDbi
Ohttps://en.wikipedia.org/wiki/Schengen_Area
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o What guarantee do we have that if the scripts get run in 5
years, with the same input data, we get the same output?

Let’s answer these questions one by one.

3.4. Your project is not done

3.4.1. How easy would it be for someone else to
rerun the analysis?

The analysis is composed of two R scripts, one to prepare the
data, and another to actually run the analysis proper. Perform-
ing the analysis might seem quite easy, because each script con-
tains comments as to what is going on, and the code is not
that complicated. However, we are missing any project-level
documentation that would provide clear instructions as to how
to run the analysis. This might seem simple for us who wrote
these scripts, but we are familiar with R, and this is still fresh
in our brains. Should someone less familiar with R have to run
the script, there is no clue for them as to how they should do
it. And of course, should the analysis be more complex (sup-
pose it’s composed of dozens of scripts), this gets even worse. It
might not even be easy for you to remember how to run this in
5 months!

And what about the required dependencies? Many packages
were used in the analysis. How should these get installed? Ide-
ally, the same versions of the packages you used and the same
version of R should get used by that person to rerun the analy-
sis.

All of this still needs to be documented, but listing the packages
that were used for an analysis and their versions takes quite
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some time. Thankfully, in part 2, we will learn about the {renv}
package to deal with this in a couple lines of code.

3.4.2. How easy would it be to update the
project?

If new data gets published, all the points discussed previously
are still valid, plus you need to make sure that the updated data
is still close enough to the previous data such that it can pass
through the data cleaning steps you wrote. You should also
make sure that the update did not introduce a mistake in past
data, or at least alert you if that is the case. Sometimes, when
new years get added, data for previous years also get corrected,
so it would be nice to make sure that you know this. Also, in
the specific case of our data, communes might get fused into a
new one, or maybe even divided into smaller communes (even
though this has not happened in a long time, it is not entirely
out of the question).

In summary, what is missing from the current project are enough
tests to make sure that an update to the data can happen
smoothly.

3.4.3. How easy would it be to reuse this code
for another project?

Said plainly, not very easy. With code in this state you have
no choice but to copy and paste it into a new script and change
it adequately. For re-usability, nothing beats structuring your
code into functions and ideally you would even package them.
We are going to learn just that in future chapters of this book.
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But sometimes you might not be interested in reusing code for
another project: however, even if that’s the case, structuring
your code into functions and packaging them makes it easy to
reuse code even inside the same project. Look at the last part of
the analysis.R script: we copied and pasted the same code 5
times and only slightly changed it. We are going to learn how not
to repeat ourselves by using functions and you will immediately
see the benefits of writing functions, even when simply reusing
them inside the same project.

3.4.4. What guarantee do we have that the
output is stable through time?

Now this might seem weird: after all, if we start from the same
dataset, does it matter when we run the scripts? We should be
getting the same result if we build the project today, in 5 months
or in 5 years. Well, not necessarily. While it is true that R is
quite stable, this cannot necessarily be said of the packages that
we use. There is no guarantee that the authors of the packages
will not change the package’s functions to work differently, or
take arguments in a different order, or even that the packages
will all be available at all in 5 years. And even if the packages are
still available and function the same, bugs in the packages might
get corrected which could alter the result. This might seem like
a non-problem; after all, if bugs get corrected, shouldn’t you
be happy to update your results as well? But this depends on
what it is we’re talking about. Sometimes it is necessary to
reproduce results exactly as they were, even if they were wrong,
for example in the context of an audit.

So we also need a way to somehow snapshot and freeze the
computational environment that was used to create the project
originally.
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3.5. Conclusion

We now have a basic analysis that has all we need to get started.
In the coming chapters, we are going to learn about topics that
will make it easy to write code that is more robust, better doc-
umented and tested, and most importantly easy to rerun (and
thus to reproduce the results). The first step will actually not
involve having to start rewriting our scripts though; next, we
are going to learn about Git, a tool that will make our life easier
by versioning our code.
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Modern software development would be impossible without ver-
sion control systems, and the same goes for building analytical
pipelines that are reproducible and robust. It doesn’t really mat-
ter what the output of the pipeline is: a simple graph, a report
with a statistical analysis, a scientific publication, a trained ma-
chine learning model that you want to hook to an API.. if the
code to the project is not versioned, you incur major risks and
the pipeline is not reproducible.

But what is version control anyway?

Version control tools make it easy to keep track of the changes
that were made to text files (like R scripts). Any change made
to any file of a project is catalogued, making it possible to trace
back how the file changed, who made the changes, and when
these changes were made. Using version control it is also quite
easy to collaborate on a project by forcing team members to
deal explicitly with the potential conflicts that might arise when
the same file got changed by different people at the same time.
Should your computer get lost, stolen, or explode, your projects
are safely backed up on a server: this is because version control
tools make use of a server which keeps track of all the changes
(and in some cases, this server is actually your team-mates’ com-
puters!)

Version control tools also make it easy to experiment with new
ideas. You can start new branches which essentially make a
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copy of your current project. In this new branch, you can safely
experiment with new features, and if the experiments are not
conclusive, you can simply discard this branch: the original copy
of your project will remain untouched. We will also use branches
to implement features, fix bugs quickly, and manage the project
in a paradigm called trunk-based development.

There are several version control tools out there, but Git is
undoubtedly the most popular one. You might have heard of
Github; this is a service that hosts repositories for your projects,
and provides other project management tools such as an issue
tracker, project wiki, feature requests.. and also very impor-
tantly continuous integration. Don’t worry if this all sounds very
abstract: by the end of the next chapter you will have all the
basic knowledge to use Git and Github.com for your projects.

Git is a tool that you must install on your computer to get
started. Once Git is installed, you can immediately start using
it; you don’t need to open an account on Github (or a similar
service), but it is recommended to make collaboration easier (it
is possible to collaborate with several people using Git without
a service like Github, by setting up a bare repository on a server
or on a network drive you control, but this is outside the scope

of this book).

You should know that Github offers private repositories for free,
so if you don’t want your work to be accessible to the public,
that is possible. Only people that you invite to your private
repositories will be able to see the code and collaborate with
you. It is also possible that your work place has set up a self-
hosted Git platform, ask your I'T department! Usually these self-
hosted platforms are Gitea or Gitlab instances. Gitea, Gitlab,
Bitbucket, Codeberg, these are all similar services to Github.
All have their advantages and disadvantages.
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The advantages of Github are twofold:

o It has a very large community of users;
« Its continuous integration service is incredibly useful, and
free for up to 2000 minutes a month.

Disadvantages are:

o It has been bought by Microsoft in 2018;
« It is not possible to self-host an instance of Github (not
for free at least).

The fact it is owned by Microsoft may not seem like an issue,
but Microsoft’s track record of previous acquisitions is open to
question (Nokia, Skype), and the recent discussions about using
source code hosted on Github to train machine learning mod-

els (Copilot)! can make one uneasy about relying too much on
Github.

So while we are going to use Github to host our projects in the
remainder of this book, almost everything you are going to learn
will be easily transferable to another code hosting platform such
as Gitlab or Bitbucket, should you want to switch (or if your
workplace has a self-hosted instance from one of Github’s com-
petitors). Installing and configuring Git will be exactly the same
regardless of the hosting service we use, and all the commands
we will use to actually interact with our repositories will be the
same as well. So why did I write almost everything is the same
across any of the code hosting platforms? Well, the two advan-
tages I cited above really give Github an edge; many developers,
researchers and data scientists have a Github account already
and so if one day you need to collaborate with people, chances
are they have an account on Github and not on another code
hosting platform.

Thttps://is.gd/rQgCj8
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But what really sets up Github.com apart is Github Actions,
Github’s continuous integration service. Github Actions is lit-
erally a computer in the cloud that you can use to run a set of
actions each time you interact with the repository (or at defined
moments as well). For example, it would be possible to run au-
tomated tests each time a collaborator uploads some changes to
the project. This way, we can make sure that no change intro-
duced a bug. Or take this book; each time I write and push a
new section or chapter to Github, the website, PDF and Epub
of this book get re-generated and updated automatically. Each
Github account gets 2000 minutes a month of free computing
time, which is really a lot. In part 2, we will make use of Github
Actions to run our RAP in the cloud, by simply pushing updates
to our code on Github.

By the way, if you're using a cloud service like Dropbox,
Onedrive, and the like, DO NOT put projects tracked by Git
in them! I really need to stress this: do not track projects with
both something like Dropbox and Git. This is because Dropbox
and similar services do not deal gracefully with conflicts: if two
collaborators change the same file, Dropbox makes two copies
of the files. One of the collaborators then has to manually deal
with the conflict. The issue is that inside a project that is being
tracked by Git, there is a hidden folder with many files that get
used for synching the project and making sure that everything
runs smoothly. If you put a Git-enabled project inside a
Dropbox folder, these files will get accessed simultaneously
by different people, and Dropbox will start making copies of
these because of conflicts. This really messes up the project
and can lead to data loss. Let Git handle the tracking and
the collaborating for you. It might seem more complex than
a service like Dropbox, and it is, but it is immensely more
powerful, and what steep learning curve it might have, it more
than makes up for it with the many features it makes available
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at your fingertips. Unlike Dropbox (or similar services), Git
deals with conflicts not on a per-file basis, but on a per-line
basis. So if two collaborators change the same file, but different
lines of this same file, there will be no conflict: Git will handle
the merge on its own.

Finally, before starting, there is something important that you
need to understand, and people sometimes get confused by it:
if a repository is public, this does not mean that anyone can
make changes to the code. What this means is that anyone can
fork the repository (essentially making a copy of the repository
to their Github account) and then suggest some changes in a
so-called pull request. The maintainer and owner of the original
project can then accept these edits or not.

In the remainder of this chapter, you are going to learn how to set
up Git on your machine, open a Github account and start using
it right away. Then, I'm going to discuss several scenarios:

« how to collaborate, as a team, on a project;
e how to contribute to someone else’s project.

4.1. Installing Git and opening a Github
account

Git is a program that you install on your computer. If you're
running a Linux distribution, chances are Git is already installed.
Try to run the following command in a terminal to see if this is
the case:

which git
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If a path like /usr/bin/git gets shown, congratulations, you
can skip the rest of this paragraph. If something like:

/usr/bin/which: no git in
< (/home/username/.local/bin:
« /home/username/bin:etc...)

gets shown instead, then this means that Git is not installed
on your system. To install Git, use your distribution’s package
manager, as it is very likely that Git is packaged for your system.
On Ubuntu, arguably the most popular Linux distribution, this
means running:

sudo apt-get update
sudo apt-get install git

If you're using Ubuntu, you may use apt instead of apt-get.
Both commands are basically interchangeable, use whatever
you're used to. I've first used Ubuntu in 2008, and even though
I don’t use it anymore as my daily Linux distro (that honor
goes to openSUSE), T still use apt-get out of habit.

On macOS and Windows, follow the instructions from the Git
Book?. It should be as easy as running an installer for any
program.

Depending on your operating system, a graphical user interface
might have been installed with Git, making it possible to inter-
act with Git outside of the command line. It is also possible to
use Git from within RStudio and many other editors have inter-
faces to Git as well. We are not going to use any graphical user
interface, however. This is because there is no common, uni-
versal graphical user interface; they all work slightly differently.

https://is.gd/9HZqW4
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The only universal is the command line. Also, learning how to
use Git via the command line will make it easier the day you
will need to use it from a server, which will very likely happen.
It also makes my job easier: it is simpler to tell you which com-
mands to run and explain them to you than littering the book
with dozens upon dozens of screenshots that might get outdated
as soon as a new version of the interface gets released.

Don’t worry, using the command line is not as hard as it
sounds.

If you don’t already have a Github account, now is the time
to create one. Just go over to https://github.com/ and sim-
ply follow the instructions and select the free tier to open your
account.

O Search of jump to... | Ppullrequests Issues Codespaces Marketplace Explore o +- &
Create your first project Following  Foryou Beta
Ready to start building? Create a Start coding instantly %
repository for a new idea o bring with GitHub
over an existing repository to keep . . R . Codespaces
contributing to it Discover interesting projects and Spin up faly configured
_ people to populate your personal news dev emirodments on
powerful WMs that start
feed. in seconds. Get up to 60

nport repository
Import repository ) ) hours 2 month of free
Your news feed helps you keep up with recent activity on time.

Recent activity repositories you watch or star and people you follow.

Get started

Winen you take act

Explore GitHub

Latest changes

Q PraTip! The feed shows you events from people you fallow and repasitories you watch or Yesterday
star Category Ferms on GitHub
R Subscribe to your news feed Discussions
2 days ago
- Persana is now a GitHub secret
O © 2023 Githuk, Inc Blog AP Terms
scanning partner
About Privacy -
op Doce 3 days ago
Contact GitHub Actions - Updating the
GitHub default GITHUB_TOKEN..
Pricing I oy a3

Add mere social links to your
user profile

View changelog

Figure 4.1.: This is your Github dashboard.
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In the next section, we are going to learn some basic Git com-
mands by versioning the two scripts that we wrote before.

4.2. Git superbasics

We are going to use the two scripts that we wrote in the previ-
ous section. If you want to follow along, create a folder called
housing and put the two scripts we developed before in there:

« save_data.R: https://is.gd/7PhUjd
« analysis.R: https://is.gd/qCJEbi

Open the folder that contains the two scripts in a file explorer.
On most Linux desktop environments you should be able to
right-click inside that folder anywhere on a blank space and
select an option titled something like “Open Terminal here”. If
you're using Windows, you can pretty much do the same but
look instead for the option titled “Open Git Bash here”. On
macOS, you need to first activate this option. Simply google
for “open terminal at folder macOS” and follow the instructions.
It is also possible to drag and drop a folder into a terminal
which will then open the correct path in the terminal. Another
option, of course, is to simply open a terminal and navigate to
the correct folder using cd (change directory, this should work
the same on Windows, macOS and Linux):

cd /home/user/housing/

Make sure that you are in the right folder by listing the contents
of the folder:
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1s

From now on, make sure to type the commands you see in the
terminal (on Linux and macOS) or in the Git Bash terminal
on Windows. To distinguish the terminal from the R command
line prompt, the prompt of a terminal (or Git Bash terminal
on Windows) will start with owner@localhost. owner is the
username of the project manager in our examples from now
on, and the computer owner used by this project manager is
called localhost (this prompt can look different on your ma-
chine, sometimes the full path to the current working directory
is listed instead). So here is what happens when owner runs 1s
on the root directory of the project:

owner@localhost $ 1s
analysis.R save_data.R

(On Linux you could also try 11 which is often available. It is
an alias for 1s -1 which provides a more detailed view. There’s
also 1s -la which also lists hidden files.)

Make sure that you see the two scripts being listed when running
1s. If not, this means that you are in the wrong directory, so
make sure that you open the terminal in the correct folder.

It’s now time to start tracking these files using Git. In the
same terminal in which we ran 1s, run now the following git
command:

owner@localhost $ git init
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hint: Using 'master' as the name for the initial

- branch.
hint: This default branch name is subject to
- change.

hint: To configure the initial branch name to

-~ use in all of your

hint: new repositories, which will suppress this
-~ warning, call:

hint:

hint: git config --global init.defaultBranch
<~ <name>

hint:

hint: Names commonly chosen instead of 'master'
< are 'main',

hint: 'trunk' and 'development'. The

- Jjust-created branch can be

hint: renamed via this command:

hint:

hint: git branch -m <name>

Initialized empty Git repository in

- /home/user/housing/.git/

Take some time to read the hints. Many git commands give you
hints and it’s always a good idea to read them. This hint here
tells us that the default branch name is “master” and that this is
subject to change. Think of a branch as a version of your code.
The “master” branch will hold the default version of your code.
But you could create a branch called “dev” that would contain
a version of the code with features that are still in development.
There is nothing special about the default, “master” branch,
and it could have been called anything else. For example, if you
create a repository on Github first, instead of creating it on your
computer, the default branch will be called “main”. You need to
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pay attention to this, because when we will start interacting with
our Github repository, we need to make sure that we have the
right branch name in mind. Also, note that because the “master”
branch is the most important branch, it gets sometimes referred
to as the “trunk”. Some teams that use trunk-based development
(which T will discuss in the next chapter) even name this branch
“trunk”.

Let’s now run this other git command:

owner@localhost $ git status

On branch master
No commits yet

Untracked files:
(use "git add <file>..." to include in what

< will be committed)
analysis.R
save_data.R

nothing added to commit but untracked files
- present (use "git add" to track)

Git tells us quite clearly that it sees two files, but that they’re
currently not being tracked. So if we would modify them, Git
would not keep track of the changes. So it’s a good idea to just
do what Git tells us to do: let’s add them so that Git can track
them:

owner@localhost $ git add
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Nothing specified, nothing added.

hint: Maybe you wanted to say 'git add .'?

hint: Turn this message off by running

hint: "git config advice.addEmptyPathspec false"

Shoot, simply running git add does not do us any good. We
need to specify which files we want to add. We can name them
one by one, for example git add filel.R file2.txt, but if
we simply want to track all the files in the folder, we can simply
use the . placeholder:

owner@localhost $ git add .

No message this time... is that a good thing? Let’s run git
status and see what’s going on:

owner@localhost $ git status

On branch master
No commits yet

Changes to be committed:

(use "git rm --cached <file>..." to unstage)
new file: analysis.R
new file: save_data.R

Nice! Our two files are being tracked now, so we can commit the
changes. Committing means that we are happy with our work,
and we can snapshot it. These snapshots then get uploaded to
Github by pushing them. This way, the changes will be available
for our coworkers for them to pull. T'll explain what this means
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later, so don’t worry if this is confusing, it won’t be by the end
of the chapter. Also, you should know that there is a special file,
called .gitignore, that allows you to list files or folders that
you want Git to ignore. This can be useful in cases where you
are working with sensitive data and don’t want it to be uploaded
to Github. We will not use the .gitignore file just yet, but will
do so in part two of the book. So for now, just remember that
this is an option.

We are now ready to commit our files. Each commit must have
a commit message, and we can write this message as an option
to the git commit command:

owner@localhost $ git commit -m "Project start"

The -m option is there to specify the message for the commit.
Before pushing the commit, let’s run git status again:

owner@localhost $ git status

On branch master
nothing to commit, working tree clean

This means that every change is accounted for in a commit. So
if we were to push now, we could then set our computer on fire:
every change would be safely backed up on Github.com. We can
also choose to not push yet, and keep working and committing.
For example, we could commit 5 times and just push once: all
of the 5 commits would be pushed to Github.com.

Let’s do just that by changing one file. Open analysis.R in
any editor and simply change the start of the script by adding
one line. So go from:
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library(dplyr)
library(ggplot2)
library(purrr)
library(tidyr)

To:

# This script analyses housing data for
- Luxembourg

library(dplyr)
library(ggplot2)
library(purrr)
library(tidyr)

and now run git status again:

owner@localhost $ git status

On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will
- be committed)
(use "git restore <file>..." to discard
- changes in working directory)
modified: analysis.R

no changes added to commit (use "git add" and/or
-~ "git commit -a")

Because the file is being tracked, Git can now tell us that some-
thing changed and that we did not commit this change. So if
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our computer would self-combust, these changes would get lost
forever. Better commit them and push them to Github.com as
soon as possible!

Remember, first, we need to add these changes to a commit
using git add .:

owner@localhost $ git add .

(You can run git status at this point to check if the file was
correctly added to be committed.)

Then, we need to commit the changes and add a nice commit
message:

owner@localhost $ git commit -m "Added a comment
-~ to analysis.R"

Try to keep commit messages as short and as explicit as possible.
This is not always easy, but it really pays off to strive for short,
clear messages. Also, ideally, you would want to keep commits as
small as possible, ideally one commit per change. For example,
if you're adding and amending comments in scripts, once you're
done with that make this a commit. Then, maybe clean up some
code. That’s another, separate commit. This makes rolling back
changes or reviewing them much easier. This will be crucial later
on when we will use trunk-based development to collaborate
with our teammates on a project. It is generally not a good idea
to code all day and then only push one single big fat commit at
the end of the day, but that is what happens very often...

By the way, even if our changes are still not on Github.com, we
can still roll back to previous commits. For example, suppose
that I delete the file accidentally by running rm analysis.R:

79



4. Version control with Git

owner@localhost $ rm analysis.R

Let’s run git status and look for the changes (it’s a line start-
ing with the word deleted):

On branch master
Changes not staged for commit:
(use "git add/rm <file>..." to update what
o will be committed)
(use "git restore <file>..." to discard
- changes in working directory)
deleted: analysis.R

no changes added to commit (use "git add" and/or
- "git commit -a")

Yep, analysis.R is gone. And deleting on the console usually
means that the file is gone forever. Well technically no, there are
still ways to recover deleted files using certain tools, but since
we were using Git we can use it to recover the files! Because we
did not commit the deletion of the file, we can simple tell Git to
ignore our changes. A simple way to achieve this is to stash the
changes, and then drop (or delete) the stash:

owner@localhost $ git stash

Saved working directory and index state WIP on
- master: \
ab43b4b Added a comment to analysis.R

So the deletion was stashed away, (so in case we want it back
we could get it back with git stash pop) and our project was
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rolled back to the previous commit. Simply take a look at the
files:

owner@localhost $ 1ls

analysis.R save_data.R

There it is! You can get rid of the stash with git stash drop.
But what if we had deleted the file and committed the change?
In this scenario, we could not use git stash, but we would need
to revert to a commit. Let’s try, first let me remove the file:

owner@localhost $ rm analysis.R
and check the status with git status:

On branch master
Changes not staged for commit:
(use "git add/rm <file>..." to update what
o will be committed)
(use "git restore <file>..." to discard
- changes in working directory)
deleted: analysis.R

no changes added to commit (use "git add" and/or
-~ "git commit -a"

Let’s add these changes and commit them:

owner@localhost $ git add .

81



4. Version control with Git

owner@localhost $ git commit -m "Removed
- analysis.R"

[master 8e51867] Removed analysis.R
1 file changed, 131 deletions(-)
delete mode 100644 analysis.R

What’s the status now?

owner@localhost $ git status

On branch master

nothing to commit, working tree clean
Now, we’ve done it! git stash won’t be of any help now. So
how to recover our file? For this, we need to know to which
commit we want to roll back. Each commit not only has a
message, but also an unique identifier that you can access with
git log:

owner@localhost $ git log

commit 8e51867dcb5ae89e5f2ab2798be8920e703£73455

& (HEAD -> master)

Author: User <owner@mailbox.com>

Date: Sun Feb 5 17:54:30 2023 +0100

Removed analysis.R

commit ab43b4b1069cd987685253632827f£19d7a402b27
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Author: User <owner@mailbox.com>
Date: Sun Feb 5 17:41:52 2023 +0100

Added a comment to analysis.R

commit df2beecba0101304f1b56e300a3cd713ce7366e5
Author: User <owner@mailbox.com>
Date: Sun Feb 5 17:32:26 2023 +0100

Project start

The first one from the top is the last commit we’ve made. We
would like to go back to the one with the message “Added a
comment to analysis.R”. See the very long string of characters
after “commit”? That’s the commit’s unique identifier, called
hash. You need to copy it (or only like the first 10 or so char-
acters, that’s enough as well). By the way, depending on your
terminal and operating system, git log may open less to view
the log. less is a program that makes it easy to view long doc-
uments. Quit it by simply pressing q on your keyboard. We
are now ready to revert to the right commit with the following
command:

owner@localhost $ git revert
- ab43b4b1069cd98768. .HEAD

and we're done! Check that all is right by running 1s to see that
the file magically returned, and git log to read the log of what
happened:

owner@localhost $ git log
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commit b7£f82ee119df52550e9cala8da2d81281e6aach8
& (HEAD -> master)

Author: User <owner@mailbox.com>

Date: Sun Feb 5 18:03:37 2023 +0100

Revert "Removed analysis.R"

This reverts commit
< 8eb1867dc5ae89e5f2ab2798be8920e703£73455.

commit 8e51867dcbae89e5f2ab2798be8920e703£73455
~ (HEAD -> master)

Author: User <owner@mailbox.com>

Date: Sun Feb 5 17:54:30 2023 +0100

Removed analysis.R

commit ab43b4b1069cd987685253632827f19d7a402b27
Author: User <owner@mailbox.com>
Date: Sun Feb 5 17:41:52 2023 +0100

Added a comment to analysis.R
commit df2beecba0101304f1b56e300a3cd713ce7366e5
Author: User <owner@mailbox.com>

Date: Sun Feb 5 17:32:26 2023 +0100

Project start

Using a range of commits in git revert reverts all the com-
mits from the starting commit (not included) to the last com-
mit. In this example, because only the commit starting with
8e51867dcbh was included in that range, only this commit was
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reverted. You could have achieved the same result with git
revert 8e51867dch.

This small example illustrates how useful Git is, even without us-
ing Github, and even if working alone on a project. At the very
least it offers you a way to simply walk back changes and gives
you a nice timeline of your project. Maybe this does not impress
you much, because we live in a world where cloud services like
Dropbox made things like this very accessible. But where Git
(with the help of a service like Github) really shines is when col-
laboration is needed. Git and code hosting services like Github
make it possible to collaborate at very large scale: thousands
of developers contribute to the Linux kernel, arguably the most
successful open-source project ever, powering most of today’s
smartphones, servers, supercomputers and embedded comput-
ers,®> and you can use these tools to collaborate at a smaller
scale very efficiently as well.

4.3. Git and Github

So we got some work done on our machine and made some
commits. We are now ready to push these commits to Github.
“Pushing” means essentially uploading these changes to Github.
This makes them available to your coworkers if you're pushing
to a private repository, or makes them available to the world if
you're pushing to a public repository.

Before pushing anything to Github though, we need to create
a new repository. This repository will contain the code for our
project, as well as all the changes that Git has been tracking on

3https://www.zdnet.com/article/who-writes-linux-almost-10000-
developers/
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our machine. So if, for example, a new team member joins, he or
she will be able to clone the repository to his or her computer and
have access to every change, every commit message and every
single bit of history of the project. If it’s a public repository,
anyone will be able to clone the repository and contribute code
to it. We are going to walk you through some examples of how
to collaborate with Git using Github in the remainder of this
chapter.

So, let’s first go back to https://github.com/ and create a new
repository:

O Search ar jump t.. Pullrequests Issues Codespaces Marketplace  Explare o +.q.

Create your first praject Following  Forgou e

start coding instantly ¥

with GitHub
Codespacas

Discover interesting projects and Sgin up ully coniqured ]

people to populate your personal news dev emrnrime

feed.

Vour n

w1 kep L With recent activity on

ae and people you Tallow,

Explose GitHub

Latest changes

Category Forms en GitHub

Figure 4.2.: Creating a new repository from your dashboard.
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You will then land on this page:

Create a new repository
A repositary contains all praject files, including the revisian history. Already have a project repository elsewhere?

Impart a repositary.

Owner * Repository name *
@& rapal- [/ [ housing
Great repositary name  housing is available, 1orable, Need inspiral ow about urban-rotary-phone?

Description (optional)

® Q Fublic
" Anyone on the internet can see this repository. You choose who can commit.

@ 6 Private

¥ou choosa who can see and commit to this repository.
Initialize this repository with:
Skip this step if you're importing an existing repository.

[0 Add a README file

This is where you can write a long description for your project. Learn more.

Add _gitignore

Choose which files not to track from a list of templates. Learn more

.gitignore template: None -

Choose a license

A license tells others what they can and can't do with your code. Learn maore.

License: None ~

@ Yo are creating a public repositary in your persanal account

Figure 4.3.: Name your repository and choose whether it’s a pub-
lic or private repository.

Name your repository (1), and choose whether it should be open
to the world or if it should be private and only accessible to your
coworkers (2). We are going to make it a public repository, but
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you could make it private and follow along, this would change
nothing in what we're going to learn.

Click on Create repository (3). You then land on this page:

=] rapdall fhuusing Pubilic 2 Pin @ Unwatch (10 - ¥ rork @@

<» Code () lssues 11 Pullrequests () actions Projects [0 wiki @ Security |+ Insights @1 Settings

Quick setup — if you've done this kind of thing before
or HTTPS 55H https://github,com/rapsallshousing. git

Ger started by creating a new file o uploading an existing file. We recommend every repositary include a README, LICENSE, and .gitignore.

...0r create a new repository on the command line

echo "# housing” >> README.md

git init

oit add README.md

git commit -m "first commit"

git oranch -M main

git remote add origin https://github.com/rapdall/housing.git
git push -u origin main

...or push an existing repository from the command line

git remote add origin https://github.com/rapdall/housing. git
@it branch -M main
@it push -u erigin main

...or import code from another repository
You can initialize this repository with code from a Subversion, Mercurial, or TFS project.

Impart code

Figure 4.4.: Some instructions to get you started.
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We get some instructions on how to actually get started with

our project. The first thing you need to do though is to click on
“SSH™:

Quick setup — if you've done this kind of thing before
or HTTPS E https://github.com/rap4all/housing.git L|;]

Get staﬁed by creannﬁew file or uploading an existing file. We recommend every repository include a README, LICENSE, and .gitignore.

...0r create a new repository on the command line

echo "# housing" >> README.md

git init

git add README.md

git commit -m "first commit"

git branch -M main

git remote add origin https://github.com/rap4all/housing.git

Figure 4.5.: Make sure to select ‘SSH’.

This will change the links in the instructions from https to
ssh. [ will explain why this is important in a couple of para-
graphs. For now, let’s read the instructions. Since we have
already started working, we need to follow the instructions ti-
tled “..or push an existing repository from the command line”.
Let’s review these commands. This is what Github suggests we
run:

git remote add origin

- git@github.com:rap4all/housing.git
git branch -M main

git push -u origin main

What’s really important is the first command and last command.
The first command adds a remote (referred to as origin) that
points to our repository. If you're following along, you should
copy the link from your repository here. It would look exactly
the same, but the user name rap4all would be replaced by your
Github username. So now, every time I push, my changes will
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get uploaded to Github. The second line renames the branch
from “master” to “main”. You are of course free to do so. 1
don’t like changing the defaults from Git, so I will keep using
the name “master”. The last command pushes our changes to the
“main” branch (but we need to change “main” to “master”).

Let’s do just that:

owner@localhost $ git remote add origin
- git@github.com:rap4all/housing.git

This produces no output. We're now ready to push:
owner@localhost $ git push -u origin master
and it fails:

ERROR: Permission to rap4all/housing.git denied
~ to b-rodrigues.
fatal: Could not read from remote repository.

Please make sure you have the correct access
- rights
and the repository exists.

The reason is quite simple: Github has absolutely no idea who
we are! Remember, if the repository is public, anyone can clone
it. But that doesn’t mean that anyone can simply push code
to the repo! This means that we need a way to tell Github
that we are the owner of the repository. For this, we need a
way to log in securely, and we will do so using a public/private
RSA encryption key pair. The idea is quite simple; we are going
to generate two files on our computer. These two files form a
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public/private key pair. We are going to upload the public key to
Github; and every time we want to interact with Github, Github
will check the public key against the private key that we keep
on our machine (never, ever, send the private key to anyone). If
they match, Github knows that we are who we claim to be and
will let us push to the repository. This is why we switched from
https to ssh before. https would allow us to log in by typing
a password each time we push (but actually, not anymore, since
password login was turned off some years ago). It is much easier
to not have to log in manually and let our key pair do the job
for us.

Let’s generate a public/private RSA key pair. Open a termi-
nal on Linux or macOS, or Git Bash on Windows and run the
following command:

owner@localhost $ ssh-keygen
The following lines will appear in your terminal:

Generating public/private rsa key pair.
Enter file in which to save the key
< (/home/user/.ssh/id_rsa):

Simply leave this empty and press enter. This next message now
appears:

Enter passphrase (empty for no passphrase):

Leave it empty as well. Entering a passphrase is not really
needed, since the ssh key pair itself will deal with the login. In
some situations, a passphrase might be useful if you're worried
that someone might get physical access to your machine and
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push code by impersonating you. But if you work with such
sensitive data and code that this is a real worry, maybe don’t
use Github?

So once you pressed enter, you get asked to confirm the
passphrase:

Enter same passphrase again:

Here again, simply leave it empty and press enter on your key-
board. Once this is done, you should see this:

Your identification has been saved in
< /home/user/.ssh/id_rsa
Your public key has been saved in
- /home/user/.ssh/id_rsa.pub
The key fingerprint is:
SHA256 : tPZnR7qdNO6mV53Mc36F3mASIyD55ktQJFBAVqJXNQw
«~ owner@localhost
The key's randomart image is:
+---[RSA 3072] —---+
| Dk=Fk=, |
| 0 0.00.. . |
| 0. oo |
| . ..0. . o0 |
| +S o.+.|
| .0.  0.0%]|
| . 0. + +=x|
| 0 ++x¥=|
| ..=00|
+----[SHA256] ————- +

If now you go to the specified path on the first line (so in our
case /home/user/.ssh/ you should see two files, id_rsa and
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id_rsa.pub, the private and public keys respectively. We're
almost done: what you need to do now is copy the contents of
the id_rsa.pub file to Github.

Go to your profile settings:

Yo
Profile
o

Figure 4.6.: Click on your user profile’s image in the top-right
corner.

And then click on “SSH and GPG keys”:
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. rap4all
N " Your personal account

& Public profile
3 Account

& Appearance
* Accessubilfg‘

£ Notifications

Access
B Billing and plans

& Emails

@ Password and authentication

() Sessions

£ SSH and GPG keys o

[ Organizations

[ Moderation

Go to your personal profile

SSH keys °-

There are no SSH keys associated with your account.

Check out our gu